分析 (1)根據(jù)函數(shù)y=Asin(ωx+φ)的周期的結(jié)論,直接求解函數(shù)f(x)的最小正周期;
(2)結(jié)合x∈[-$\frac{π}{6}$,$\frac{π}{2}$]時,求出相位的范圍,再根據(jù)正弦函數(shù)的圖象與性質(zhì)的公式,即可得到函數(shù)的最大值與最小值.
解答 解:(1)∵f(x)=sin2x,∴ω=2,
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π.
(2)∵x∈[-$\frac{π}{6}$,$\frac{π}{2}$],
∴2x∈[-$\frac{π}{3}$,π].
于是,當(dāng)x=$\frac{π}{4}$時,fmax(x)=sin$\frac{π}{2}$=1;
當(dāng)x=$-\frac{π}{6}$,fmin(x)=sin(-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題考查三角函數(shù)的周期與最值,著重考查了三角函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)等知識,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-1,1) | B. | [-∞,$\frac{1}{13}$] | C. | [-$\frac{1}{13}$,$\frac{1}{13}$] | D. | [-$\frac{1}{5}$,$\frac{1}{5}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 7 | B. | 1 | C. | log72 | D. | 0 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com