函數(shù)F(x)=![]()
t(t-4)dt在[-1,5]上( )
A.有最大值0,無最小值
B.有最大值0,最小值-![]()
C.有最小值-
,無最大值
D.既無最大值也無最小值
科目:高中數(shù)學(xué) 來源:四川省成都樹德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022
對于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對定義域內(nèi)的任意x,都滿足f(x+T)-f(x)=M,則稱函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱為函數(shù)y=f(x)的一個準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:
①2π是函數(shù)f(x)=sinx的一個準(zhǔn)周期;
②f(x)=x+(-1)x(x∈z)是以T=2為一個準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);
③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);
④如果f(x)是一個一次函數(shù)與一個周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);
⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省豫南九校2012屆高三第四次聯(lián)考數(shù)學(xué)文科試題 題型:044
已知函數(shù)
f(x)=lnx2-(Ⅰ)求函數(shù)f(x)的遞增區(qū)間;
(Ⅱ)當(dāng)a=1時,過點P(0,t)(t∈R)作曲線y=f(x)的兩條切線,設(shè)兩切點為P1(x1,f(x1)),P2(x2,f(x2))(x1≠x2),求證x1+x2為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對函數(shù)f(x)=ax2+bx+c(a≠0)作x=h(t)的代換,則總不改變函數(shù)f(x)的值域的代換是 ( )
A.h(t)=10t B.h(t)=t2
C.h(t)=sint D.h(t)=log2t
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新課標(biāo)高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=
x3+
x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍;
(3)當(dāng)a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com