【題目】已知向量
=(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),設(shè)函數(shù)f(x)=
+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(
,0)求函數(shù)f(x)在區(qū)間[0,
]上的取值范圍.
【答案】
(1)解:∵f(x)=
+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx×2
cosωx+λ
=﹣(cos2ωx﹣sin2ωx)+
sin2ωx+λ
=
sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣
)+λ
∵圖象關(guān)于直線x=π對稱,∴2πω﹣
=
+kπ,k∈z
∴ω=
+
,又ω∈(
,1)
∴k=1時,ω= ![]()
∴函數(shù)f(x)的最小正周期為
= ![]()
(2)解:∵f(
)=0
∴2sin(2×
×
﹣
)+λ=0
∴λ=﹣ ![]()
∴f(x)=2sin(
x﹣
)﹣ ![]()
由x∈[0,
]
∴
x﹣
∈[﹣
,
]
∴sin(
x﹣
)∈[﹣
,1]
∴2sin(
x﹣
)﹣
=f(x)∈[﹣1﹣
,2﹣
]
故函數(shù)f(x)在區(qū)間[0,
]上的取值范圍為[﹣1﹣
,2﹣
]
【解析】(1)先利用向量數(shù)量積運算性質(zhì),求函數(shù)f(x)的解析式,再利用二倍角公式和兩角差的余弦公式將函數(shù)f(x)化為y=Asin(ωx+φ)+k型函數(shù),最后利用函數(shù)的對稱性和ω的范圍,計算ω的值,從而得函數(shù)的最小正周期;(2)先將已知點的坐標(biāo)代入函數(shù)解析式,求得λ的值,再求內(nèi)層函數(shù)的值域,最后將內(nèi)層函數(shù)看做整體,利用正弦函數(shù)的圖象和性質(zhì)即可求得函數(shù)f(x)的值域.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( ) ![]()
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)= ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=sin(x﹣
)sin(x+
),有下列命題:
①此函數(shù)可以化為f(x)=﹣
sin(2x+
);
②函數(shù)f(x)的最小正周期是π,其圖象的一個對稱中心是(
, 0);
③函數(shù)f(x)的最小值為﹣
, 其圖象的一條對稱軸是x=
;
④函數(shù)f(x)的圖象向右平移
個單位后得到的函數(shù)是偶函數(shù);
⑤函數(shù)f(x)在區(qū)間(﹣
, 0)上是減函數(shù).
其中所有正確的命題的序號個數(shù)是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
與坐標(biāo)軸的交點都在圓
上.
(1)求圓
的方程;
(2)若圓
與直線
交于
,
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|<
)的圖象上的每一點的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的一半,再將圖象向右平移
個單位長度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為
,
,…,
).
![]()
(1)求成績在
的頻率,并補全此頻率分布直方圖;
(2)求這次考試平均分的估計值;
(3)若從成績在
和
的學(xué)生中任選兩人,求他們的成績在同一分組區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x+a2x+3,a∈R
(1)當(dāng)a=﹣4時,且x∈[0,2],求函數(shù)f(x)的值域;
(2)若f(x)>0在(0,+∞)對任意的實數(shù)x恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com