已知![]()
(Ⅰ)當(dāng)
時(shí),求
的值;
(Ⅱ)指出
的最大值與最小值,并分別寫出使
取得最大值、最小值的自變量
的集合.
(1)
;(2)最大值1,
;最小值0,
.
【解析】本試題主要考查了三角函數(shù)中誘導(dǎo)公式的、同角三角關(guān)系式的運(yùn)用,以及正余弦函數(shù)的最值的求解和運(yùn)算的綜合試題。誘導(dǎo)公式符合奇變偶不變符號(hào)看象限的原則,是化簡(jiǎn)的關(guān)鍵步驟。
解: (Ⅰ)
![]()
……………………3分
由
,得
.
……………………4分
所以
.
……………………6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061920474645394285/SYS201206192049131883932209_DA.files/image008.png">,所以
的最大值為1,最小值為0. …………8分
當(dāng)
時(shí),
,此時(shí)
.
所以使
取得最大值的自變量
的集合為
.
……………………10分
當(dāng)
時(shí),
,此時(shí)
.
所以使
取得最小值的自變量
的集合為
.………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量
.
(1)若
,求向量
的夾角;k+s-5#u
k+s-5#u ![]()
(2)已知
,且
,當(dāng)
時(shí),求x的值并求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西咸陽(yáng)范公中學(xué)高三上學(xué)期摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線方程;
(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在
上存在一點(diǎn)
,使得
<
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西九江市等七校高三聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,對(duì)定義域內(nèi)任意x,均有
恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對(duì)任意的正整數(shù)
,
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三第七次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)若
在區(qū)間
上是單調(diào)遞減函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省沈陽(yáng)市高三高考領(lǐng)航考試(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com