分析:根據(jù)函數(shù)的解析式,分類討論,當(dāng)x≤0時(shí),f(x)=x+cosx,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性,根據(jù)f(0)=1>0,x→-∞時(shí),f(x)→-∞,從而求得函數(shù)零點(diǎn)的個(gè)數(shù);當(dāng)x>0時(shí),f(x)=
x3-4x+1,求導(dǎo),判斷導(dǎo)數(shù)的符號,確定函數(shù)的單調(diào)性和極值,根據(jù)f(2)=
- 7<0,f(0)=1>0,x→+∞時(shí),f(x)→+∞,從而求得函數(shù)零點(diǎn)的個(gè)數(shù).
解答:解:當(dāng)x≤0時(shí),f(x)=x+cosx,
f′(x)=1-sinx≥0,
∴f(x)在(-∞,0)上單調(diào)遞增,且f(0)=1>0,x→-∞時(shí),f(x)→-∞,
∴f(x)在(-∞,0)上有一個(gè)零點(diǎn);
當(dāng)x>0時(shí),f(x)=
x3-4x+1,
f′(x)=x
2-4=0,
解得x=2或x=-2(舍),
∴當(dāng)0<x<2時(shí),f′(x)<0,當(dāng)x>2時(shí),f′(x)>0,
∴f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
且f(2)=
- 7<0,f(0)=1>0,x→+∞時(shí),f(x)→+∞,
∴f(x)在(0,+∞)上有兩個(gè)零點(diǎn);
綜上函數(shù)f(x)=
| | x+cosx,(x≤0) | | x3-4x+1,(x>0) |
| |
的零點(diǎn)個(gè)數(shù)為3個(gè),
故選B.