分析 (1)先求導(dǎo)f′(x)=3x2-6ax+3(2-a),再確定△=36(a2+a-2)=36(a+2)(a-1);從而以△討論單調(diào)區(qū)間即可;
(2)令f′(0)=3×02-6a•0+3(2-a)=0可求得a=2;從而化簡f(x)=x3-6x2,從而可知f(x)的單調(diào)遞增區(qū)間為(-∞,0),(4,+∞);單調(diào)減區(qū)間為(0,4);再由f(x1)=f(x2),且x2<x1<4知x2<0,x1>0,從而可得f(x2)>f(-x1),再由單調(diào)性可得x2>-x1,從而證明.
解答
解:(1)f′(x)=3x2-6ax+3(2-a),
△=36(a2+a-2)=36(a+2)(a-1);
①當(dāng)a<-2或a>1時,
由f′(x)=3x2-6ax+3(2-a)=0解得,
x=a±$\sqrt{{a}^{2}+a-2}$;
f(x)的單調(diào)遞增區(qū)間為(-∞,a-$\sqrt{{a}^{2}+a-2}$),(a+$\sqrt{{a}^{2}+a-2}$,+∞);
②當(dāng)-2≤a≤1時,f(x)的單調(diào)遞增區(qū)間為(-∞,+∞);
(2)證明:令f′(0)=3×02-6a•0+3(2-a)=0得a=2;
故f(x)=x3-6x2,
由(1)知,f(x)的單調(diào)遞增區(qū)間為(-∞,0),(4,+∞);
單調(diào)減區(qū)間為(0,4);
∵f(x1)=f(x2),且x2<x1<4,
∴x2<0,x1>0,
則-x1<0,而f(x1)-f(-x1)=2x13>0,
則f(x1)>f(-x1),
則f(x2)>f(-x1),
又f(x)的單調(diào)遞增區(qū)間為(-∞,0),
故x2>-x1,
故x1+x2>0.
點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用,二次方程的根及單調(diào)性的判斷與應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5π+4 | B. | 14π+4 | C. | 5π+12 | D. | 14π+12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 4 | C. | 12 | D. | 144 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com