分析 (1)由已知結(jié)合等差數(shù)列的性質(zhì)求得a8,則a3+a13等于2a8可求;
(2)利用等差數(shù)列的性質(zhì),a9+a10,a19+a20…a99+a100仍成等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求得答案.
解答 解:在等差數(shù)列{an}中,
(1)由a1-a4-a8-a12+a15=2,得
(a1+a15)-(a4+a8+a12)=2,
即2a8-3a8=2,∴a8=-2,
∴a3+a13=2a8=-4;
(2)∵{an}為等差數(shù)列,
∴a9+a10,a19+a20…a99+a100仍成等差數(shù)列,且公差為b-a,
由已知得a99+a100=a+9•(b-a)=9b-8a.
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì)與通項(xiàng)公式,關(guān)鍵在于對(duì)性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | f(-$\frac{3π}{4}$)<f($\frac{5π}{3}$)<f($\frac{7π}{6}$) | B. | f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$)<f($\frac{5π}{3}$) | C. | f($\frac{5π}{3}$)<f($\frac{7π}{6}$)<f(-$\frac{3π}{4}$) | D. | f($\frac{5π}{3}$)<f(-$\frac{3π}{4}$)<f($\frac{7π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [-$\frac{π}{3}$,$\frac{π}{6}$] | B. | [-$\frac{π}{4}$,$\frac{π}{4}$] | C. | [$\frac{π}{6}$,$\frac{2π}{3}$] | D. | [$\frac{π}{4}$,$\frac{3π}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [$\frac{1}{2}$ln2,+∞] | B. | [0,$\frac{1}{2}$ln2] | C. | (-∞,0] | D. | (-∞,$\frac{1}{2}$ln2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com