分析 由題意可得,f(x)=k(x+2)有兩個(gè)不等的實(shí)根,作出y=f(x)的圖象和直線y=k(x+2),通過圖象觀察它們有兩個(gè)交點(diǎn)的情況,注意運(yùn)用導(dǎo)數(shù)求切線的斜率和直線和圓相切的條件:d=r.
解答
解:函數(shù)g(x)=f(x)-kx-2k恰有兩個(gè)零點(diǎn),
即為f(x)=k(x+2)有兩個(gè)不等的實(shí)根,
作出y=f(x)的圖象和直線y=k(x+2),
當(dāng)x<0時(shí),直線和曲線相切,設(shè)切點(diǎn)為(m,km+2k),
由em+1=km+2k=k,k≠0,解得k=1,m=-1,
當(dāng)直線經(jīng)過點(diǎn)(0,e),k=$\frac{e}{2}$,
由圖象可知,當(dāng)1<k<$\frac{e}{2}$時(shí),直線和曲線有兩個(gè)交點(diǎn),
當(dāng)直線和半圓相切,d=r=1,圓心為(1,0),
由$\frac{|3k|}{\sqrt{1+{k}^{2}}}$=1,解得k=$\frac{\sqrt{2}}{4}$(負(fù)的舍去),
由圖象可得,0≤k<$\frac{\sqrt{2}}{4}$時(shí),直線和半圓有兩個(gè)交點(diǎn).
則有k的取值范圍是[0,$\frac{\sqrt{2}}{4}$)∪(1,$\frac{e}{2}$).
故答案為:[0,$\frac{\sqrt{2}}{4}$)∪(1,$\frac{e}{2}$).
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)的求法,主要考查函數(shù)和方程的轉(zhuǎn)化思想,運(yùn)用數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 9 | C. | 18 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分不必要條件 | B. | 必要不充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 題 | A | B | C |
| 答卷數(shù) | 180 | 300 | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com