【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且a=3,b=4,B=
+A.
(1)求cosB的值;
(2)求sin2A+sinC的值.
【答案】
(1)解:∵
,
∴cosB=cos(
+A)=﹣sinA,
又a=3,b=4,所以由正弦定理得
,
所以
=
,
所以﹣3sinB=4cosB,兩邊平方得9sin2B=16cos2B,
又sin2B+cos2B=1,
所以
,而
,
所以 ![]()
(2)解:∵
,
∴
,
∵
,
∴2A=2B﹣π,
∴sin2A=sin(2B﹣π)=﹣sin2B
= ![]()
又A+B+C=π,
∴
,
∴sinC=﹣cos2B=1﹣2cos2B=
.
∴ ![]()
【解析】(1)運(yùn)用正弦定理和誘導(dǎo)公式、以及同角公式,即可得到cosB;(2)由二倍角的正弦和余弦公式,以及誘導(dǎo)公式,化簡計(jì)算即可得到.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:
),還要掌握余弦定理的定義(余弦定理:
;
;
)的相關(guān)知識才是答題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為
,求CE的長.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求動點(diǎn)A的軌跡M的方程;
(Ⅱ)P為軌跡M上動點(diǎn),△PBC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 當(dāng)P在M上運(yùn)動時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)
向右平移
個單位后得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)在區(qū)間[a,b](b>a)上的值域是
,則b﹣a的最小值m和最大值M分別為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mln(x+1)﹣nx在點(diǎn)(1,f(1))處的切線與y軸垂直,且
,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=﹣x2+2x,確定非負(fù)實(shí)數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
(t 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=asinθ.
(Ⅰ)若a=2,求圓C的直角坐標(biāo)方程與直線l的普通方程;
(Ⅱ)設(shè)直線l截圓C的弦長等于圓C的半徑長的
倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 設(shè)函數(shù)g(n)=
,若bn=g(2n+4),n∈N* , 則數(shù)列{bn}的前n(n≥2)項(xiàng)和Sn等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在y軸正半軸上,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),線段AB的長是8,AB的中點(diǎn)到x軸的距離是3.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線m在y軸上的截距為6,且與拋物線交于P,Q兩點(diǎn),連結(jié)QF并延長交拋物線的準(zhǔn)線于點(diǎn)R,當(dāng)直線PR恰與拋物線相切時,求直線m的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(Ⅰ)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)?并說明理由.
參考公式與臨界值表:K2=
.
p(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com