| A. | a13+a9=b14b6 | B. | a13+a9=b14+b6 | C. | a13+a9≥b14+b6 | D. | a13+a9≤b14+b6 |
分析 設(shè){an}是為公差為d的等差數(shù)列,{bn}是公比為q的正項等比數(shù)列,運用等比數(shù)列和等差數(shù)列的通項公式和性質(zhì),作差比較結(jié)合完全平方公式和提取公因式,即可得到結(jié)論.
解答 解:設(shè){an}是為公差為d的等差數(shù)列,{bn}是公比為q的正項等比數(shù)列,
即有a13+a9=2a11=2b10,b14b6=b102,
則a13+a9-b14b6=(2-b10)b10,
當(dāng)b10≥2時,a13+a9≤b14b6;
當(dāng)0<b10<2時,a13+a9>b14b6.
又b14+b6=b1q13+b1q5,
由a13+a9-(b14+b6)=2b1q9-b1q13-b1q5,
=-b1q5(q8-2q4+1)=-b1q5(q4-1)2≤0,
則有a13+a9≤b14+b6.
綜上可得,A,B,C均錯,D正確.
故選:D.
點評 本題考查等比數(shù)列和等差數(shù)列的通項公式和性質(zhì)的運用,考查運算化簡的能力,屬于中檔題和易錯題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overline{{x}_{甲}}$$<\overline{{x}_{乙}}$,s${\;}_{甲}^{2}$$<{s}_{乙}^{2}$ | B. | $\overline{{x}_{甲}}$$>\overrightarrow{{x}_{乙}}$,s${\;}_{甲}^{2}$$<{s}_{乙}^{2}$ | ||
| C. | $\overline{{x}_{甲}}$$>\overrightarrow{{x}_{乙}}$,s${\;}_{甲}^{2}$>s${\;}_{乙}^{2}$ | D. | $\overline{{x}_{甲}}$$<\overline{{x}_{乙}}$,s${\;}_{甲}^{2}$$>{s}_{乙}^{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com