【題目】如圖,在四棱錐
中,底面
為矩形,已知
平面
,
為
的中點(diǎn),
,過(guò)點(diǎn)
作
于
,連接
,
,
.
![]()
(1)求證:平面
平面
;
(2)若直線
與平面
所成角的正切值為
,求平面
與平面
所成銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析 (2)![]()
【解析】
(1)證明
平面
推出
,再證明
平面
推出
,然后證明
平面
從而由線面垂直推出面面垂直;(2)利用線面角的正切值求出AD,以
為坐標(biāo)中心建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,代入公式
即可得解.
(1)證明:∵
平面
,∴
,
又∵
,
,
平面
,
平面
,
∴
平面
,∴
,
又∵
,∴
,
,∴
平面
,∴
,
又∵
,∴
平面
,
又∵
平面
,∴平面
平面
.
(2)∵
平面
,∴
與平面
所成角為
,
∴
,
假設(shè)
,∴
,∴
,∴
,
以
為坐標(biāo)中心建立如圖所示的空間直角坐標(biāo)系
,
,
,
,
,
,
,
由(1)可知
平面
,∴
為平面
的法向量,
又∵
平面
,∴
為平面
的法向量,
∵
,
,
∴![]()
.
∴平面
與平面
所成角的余弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
為曲線
上的動(dòng)點(diǎn),點(diǎn)
在射線
上,且滿足
.
(Ⅰ)求點(diǎn)
的軌跡
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
與
軸交于點(diǎn)
,過(guò)點(diǎn)
且傾斜角為
的直線
與
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,
。
(1)求
的單調(diào)區(qū)間;
(2)討論
零點(diǎn)的個(gè)數(shù);
(3)當(dāng)
時(shí),設(shè)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行六面體
中,以頂點(diǎn)
為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為
.
![]()
(1)求
的長(zhǎng);
(2)求異面直線
與
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求
的取值范圍;
(2)記兩個(gè)極值點(diǎn)為
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)M、N分別在AB1、BC1上,且AM=
AB1,BN=
BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正確命題的個(gè)數(shù)是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
交于
,
兩點(diǎn),且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他門各應(yīng)償還多少?該問(wèn)題中,1斗為10升,則羊主人應(yīng)償還多少升粟?( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com