【題目】某地區(qū)某農(nóng)產(chǎn)品近五年的產(chǎn)量統(tǒng)計如下表:
![]()
(Ⅰ)根據(jù)表中數(shù)據(jù),建立
關(guān)于
的線性回歸方程
,并由所建立的回歸方程預(yù)測該地區(qū)2018年該農(nóng)產(chǎn)品的產(chǎn)量;
(Ⅱ)若近五年該農(nóng)產(chǎn)品每千克的價格
(單位:元)與年產(chǎn)量
(單位:萬噸)滿足的函數(shù)關(guān)系式為
,且每年該農(nóng)產(chǎn)品都能售完.求年銷售額
最大時相應(yīng)的年份代碼
的值,
附:對于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的計算公式:
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】業(yè)界稱“中國芯”迎來發(fā)展和投資元年,某芯片企業(yè)準(zhǔn)備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為
(
為常數(shù))元,之后每年會投入一筆研發(fā)資金,
年后總投入資金記為
,經(jīng)計算發(fā)現(xiàn)當(dāng)
時,
近似地滿足
,其中
為常數(shù),
.已知
年后總投入資金為研發(fā)啟動時投入資金的
倍.問
(1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的
倍;
(2)研發(fā)啟動后第幾年的投入資金的最多.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,并且圖象關(guān)于y軸對稱,當(dāng)x≤-1時,y=f(x)的圖象是經(jīng)過點(diǎn)(-2,0)與(-1,1)的射線,又在y=f(x)的圖象中有一部分是頂點(diǎn)在(0,2),且經(jīng)過點(diǎn)(1,1)的一段拋物線.
(1)試求出函數(shù)f(x)的表達(dá)式,作出其圖象;
(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
過點(diǎn)
,且兩個焦點(diǎn)的坐標(biāo)分別為
,
.
(1)求
的方程;
(2)若
,
,
為
上的三個不同的點(diǎn),
為坐標(biāo)原點(diǎn),且
,求證:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在
中,
,D,E分別為
的中點(diǎn),點(diǎn)F為線段
上的一點(diǎn),將
沿
折起到
的位置,使
,如圖2.
![]()
(1)求二面角![]()
(2)線段
上是否存在點(diǎn)
,使
平面
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,真命題的個數(shù)是 ( 。
①命題:“已知
,“
”是“
”的充分不必要條件”;
②命題:“p且q為真”是“p或q為真”的必要不充分條件;
③命題:已知冪函數(shù)
的圖象經(jīng)過點(diǎn)(2,
),則f(4)的值等于
;
④命題:若
,則
.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
和
,
(Ⅰ)設(shè)
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,
為函數(shù)
圖象與函數(shù)
圖象的公共點(diǎn),且在點(diǎn)
處有公共切線,求點(diǎn)
的坐標(biāo)及實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南北朝時間著名數(shù)學(xué)家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,運(yùn)用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓
繞
軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,若對任意給定的
,關(guān)于
的方程
在區(qū)間
上總存在唯一的一個解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com