【題目】在平面直角坐標(biāo)系中,動點
到兩點
的距離之和等于4,設(shè)點
的軌跡為曲線
,直線
過點
且與曲線
交于
兩點.
(Ⅰ)求曲線
的方程;
(Ⅱ)
的面積是否存在最大值,若存在,求出
的面積的最大值;若不存在,說明理由.
【答案】(1)
(2)
的最大值為![]()
【解析】試題分析:(Ⅰ)利用橢圓的定義進(jìn)行求解;(Ⅱ)設(shè)出直線方程,聯(lián)立直線和橢圓的方程,得到關(guān)于
的一元二次方程,利用根與系數(shù)的關(guān)系、三角形的面積公式得到表達(dá)式,再利用換元思想和函數(shù)的單調(diào)性進(jìn)行求解.
試題解析:(1)由橢圓定義知,點
的軌跡
是以
為焦點,長半軸長為2的橢圓.故曲線
的方程為
.
(2)存在
面積的最大值
因為直線過
,可設(shè)直線的方程為
.
則![]()
整理得![]()
由![]()
設(shè)![]()
解得![]()
則![]()
![]()
設(shè)![]()
則
在區(qū)間
上為增函數(shù)
所以![]()
所以
當(dāng)且僅當(dāng)
時取等號
所以
的最大值為![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的離心率e=
,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為 ![]()
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M,
=λ(
),若點N在圓O上,求正實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
為坐標(biāo)原點,已知向量
,又點
,
,
,
.
(1)若
,且
,求向量
;
(2)若向量
與向量
共線,常數(shù)
,求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點A(4,0),B(0,2)
(1)求過P(2,3)點且與直線AB平行的直線l的方程;
(2)設(shè)O(0,0),求△OAB外接圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,BD=1,CE=3,O為BC的中點.
![]()
(1)求證:面EFD⊥面BCED;
(2)求平面DEF與平面ACEF所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的兩個焦點分別為
,
,過
作橢圓長軸的垂線交橢圓于點
,若
為等腰直角三角形,則橢圓的離心率是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】試題分析:解:設(shè)點P在x軸上方,坐標(biāo)為(
),∵
為等腰直角三角形,∴|PF2|=|F1F2|,
,故選D.
考點:橢圓的簡單性質(zhì)
點評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“
”是“對任意的正數(shù)
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點
到點
,
及到直線
的距離都相等,如果這樣的點恰好只有一個,那么實數(shù)
的值是( )
A.
B.
C.
或
D.
或![]()
【答案】D
【解析】試題分析:由題意知
在拋物線
上,設(shè)
,則有![]()
,化簡得
,當(dāng)
時,符合題意;當(dāng)
時,
,有
,
,則
,所以選D.
考點:1、點到直線的距離公式;2、拋物線的性質(zhì).
【方法點睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點
和直線
的距離相等,則
的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到到焦點的距離、拋物線上的點到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化,如果問題中涉及拋物線的焦點和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線的定義就能解決.
【題型】單選題
【結(jié)束】
13
【題目】在極坐標(biāo)系中,已知兩點
,
,則
,
兩點間的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
:
和點
,動圓
經(jīng)過點
且與圓
相切,圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)點
是曲線
與
軸正半軸的交點,點
,
在曲線
上,若直線
,
的斜率分別是
,
,滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程![]()
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線
的斜率和截距的最小二乘估計分別為
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com