欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知{an}為等差數(shù)列,且a4=8,a3+a7=20.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出;
(2)利用“裂項(xiàng)求和”即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a4=8,a3+a7=20,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=8}\\{2{a}_{1}+8d=20}\end{array}\right.$,解得a1=d=2.
∴an=2+2(n-1)=2n
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$$(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$]
=$\frac{1}{4}$$(1-\frac{1}{n+1})$
=$\frac{n}{4n+4}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列集合中表示同一集合的是( 。
A.M={整數(shù)},N={整數(shù)集}B.M={(3,2)},N={(2,3)}
C.M={(x,y)|x+y=1},N={(y,x)|x+y=1}D.M={1,2},N={(1,2)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.三棱錐A-BCD的三條側(cè)棱兩兩互相垂直,且$AB=2,AD=\sqrt{3},AC=1$,則A,B兩點(diǎn)在三棱錐的外接球上的球面距離為$\frac{{\sqrt{2}π}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t是參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若點(diǎn)P(1,0),直線與曲線C相交于A、B兩點(diǎn),且|AB|=$\sqrt{15}$,求|PA|•|PB|及直線的傾斜角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:平面EFG∥平面PAB;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知b<a<0,$\root{3}{a}$-$\root{3}$=m,$\root{3}{a-b}$=n,則有( 。
A.m>nB.m<nC.m=nD.m≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形EFGH為四面體A-BCD的一個(gè)截面,若截面為平行四邊形,
(1)求證:AB∥平面EFGH;
(2)若AB⊥CD,求證:四邊形EFGH為矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的各項(xiàng)均為正整數(shù),其前n項(xiàng)和為Sn,若an+1=$\left\{\begin{array}{l}{\frac{{a}_{n}}{2},}&{{a}_{n}是偶數(shù)}\\{{3a}_{n}+1,}&{{a}_{n}是奇數(shù)}\end{array}\right.$且a1為一奇數(shù),S3=29,則S2015=4725.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,左、右頂點(diǎn)分別為A、B,焦距為2c,O為坐標(biāo)原點(diǎn),點(diǎn)P(c,b)滿足$\overrightarrow{PO}$+$\overrightarrow{PB}$=2$\overrightarrow{P{F}_{2}}$,|$\overrightarrow{P{F}_{1}}$|=$\sqrt{7}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),使得直線PO平分線段MN,且$\overrightarrow{AM}$=λ$\overrightarrow{BN}$?若存在,求l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案