【題目】商場銷售某一品牌的羊毛衫,購買人數(shù)是羊毛衫標(biāo)價(jià)的一次函數(shù),標(biāo)價(jià)越高,購買人數(shù)越少.把購買人數(shù)為零時(shí)的最低標(biāo)價(jià)稱為無效價(jià)格,已知無效價(jià)格為每件300元.現(xiàn)在這種羊毛衫的成本價(jià)是100元/ 件,商場以高于成本價(jià)的價(jià)格(標(biāo)價(jià))出售. 問:
(1)商場要獲取最大利潤,羊毛衫的標(biāo)價(jià)應(yīng)定為每件多少元?
(2)通常情況下,獲取最大利潤只是一種“理想結(jié)果”,如果商場要獲得最大利潤的75%,那么羊毛衫的標(biāo)價(jià)為每件多少元?
【答案】(1)200元;(2)250元或150元.
【解析】試題分析:(1)設(shè)出函數(shù)的解析式,確定利潤函數(shù),利用配方法,即可求出最大利潤和羊毛衫的標(biāo)價(jià);(2)利用商場要獲得的最大利潤的
,建立方程,即可求得結(jié)論.
試題解析:(1)設(shè)購買人數(shù)為
人,羊毛衫的標(biāo)價(jià)為每件
元,利潤為
元,
則
,
,
由題意,得
,即
,
∴
,
∴
(
),
∵
,
∴
時(shí),
,
即商場要獲取最大利潤,羊毛衫的標(biāo)價(jià)應(yīng)定為每件200元.
(2)解:由題意得
,
,解得
或
,
所以,商場要獲取最大利潤的
,每件標(biāo)價(jià)為250元或150元.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體
中,
分別是
的中點(diǎn),將
沿
折起,使
.![]()
(1)證明:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)角形海灣AOB,∠AOB=2θ(常數(shù)θ為銳角).?dāng)M用長度為l(l為常數(shù))的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:
方案一 如圖1,圍成扇形養(yǎng)殖區(qū)OPQ,其中
=l;
方案二 如圖2,圍成三角形養(yǎng)殖區(qū)OCD,其中CD=l;
![]()
(1)求方案一中養(yǎng)殖區(qū)的面積S1 ;
(2)求證:方案二中養(yǎng)殖區(qū)的最大面積S2=
;
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)=
,且f(1)=
,則不等式f(lnx)>f(3)的解集為( )
A.(﹣∞,e3)
B.(0,e3)
C.(1,e3)
D.(e3 , +∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
.
(1)若a、b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒有實(shí)根的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形
的對角線
與
相交于
點(diǎn),將
沿對角線折起,使得平面
平面
(如圖),則下列命題中正確的是( )
![]()
A. 直線
直線
,且直線
直線![]()
B. 直線
平面
,且直線
平面![]()
C. 平面
平面
,且平面
平面![]()
D. 平面
平面
,且平面
平面![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
的右焦點(diǎn)為F,不垂直x軸且不過F點(diǎn)的直線l與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)若直線l經(jīng)過點(diǎn)P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(Ⅱ)如果FA⊥FB,原點(diǎn)到直線l的距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
的內(nèi)角
所對的邊分別是
,且
是
與
的等差中項(xiàng).
(Ⅰ)求角
;
(Ⅱ)設(shè)
,求
周長的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com