【題目】下列命題中,假命題的是( )
A.一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.
B.平行于同一平面的兩條直線一定平行.
C.如果平面
不垂直于平面
,那么平面
內(nèi)一定不存在直線垂直于平面
.
D.若直線
不平行于平面
,且
不在平面
內(nèi),則在平面
內(nèi)不存在與
平行的直線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩直線
的傾斜角分別為
與
,則下列四個命題中正確的是( )
A. 若
<
,則兩直線的斜率:k1 < k2 B. 若
=
,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則
<
D. 若兩直線的斜率:k1= k2 ,則
=![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率
,一條準(zhǔn)線方程為![]()
⑴求橢圓
的方程;
⑵設(shè)
為橢圓
上的兩個動點,
為坐標(biāo)原點,且
.
①當(dāng)直線
的傾斜角為
時,求
的面積;
②是否存在以原點
為圓心的定圓,使得該定圓始終與直線
相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對于曲線f(x)=-ex-x(e為自然對數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
在
上恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐
中,點
在以
為直徑的圓
上,平面
平面
,點
在線段
上,且
,
,
,
,點
為
的重心,點
為
的中點.
![]()
(1)求證:
平面
;
(2)求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進(jìn)行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示
(1)由折線圖可以看出,可用線性回歸模型擬合月利潤
(單位:百萬元)與月份代碼
之間的關(guān)系,求
關(guān)于
的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;
![]()
甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有
兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用
個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不同,現(xiàn)對
兩種型號的新型材料對應(yīng)的產(chǎn)品各
件進(jìn)行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:
使用壽命/材料類型 | 1個月 | 2個月 | 3個月 | 4個月 | 總計 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
經(jīng)甲公司測算平均每包新型材料每月可以帶來
萬元收入,不考慮除采購成本之外的其他成本,
材料每包的成本為
萬元,
材料每包的成本為
萬元.假設(shè)每包新型材料的使用壽命都是整月數(shù),且以頻率作為每包新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每包新型材料產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料?
參考數(shù)據(jù):
, ![]()
參考公式:回歸直線方程
,其中![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月2日 | 12月3日 | 12月4日 |
溫差 | 11 | 13 | 12 |
發(fā)芽數(shù) | 25 | 30 | 26 |
(1)請根據(jù)12月2日至12月4日的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(2)該農(nóng)科所確定的研究方案是:先用上面的3組數(shù)據(jù)求線性回歸方程,再選取2組數(shù)據(jù)進(jìn)行檢驗.若12月5日溫差為
,發(fā)芽數(shù)16顆,12月6日溫差為
,發(fā)芽數(shù)23顆.由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
注:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
的焦點為
,在
上存在
,
兩點滿足
,且點
在
軸上方,以
為切點作
的切線
,
與該拋物線的準(zhǔn)線相交于
,則
的坐標(biāo)為__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com