分析 先求出第一個(gè)不等式得到x的取值范圍,利用積分的幾何意義進(jìn)行求解即可.
解答
解:由$\sqrt{1-x}$≤1得0≤1-x≤1,即0≤x≤1,
則由積分的性質(zhì)可知平面區(qū)域Ω的面積S=∫${\;}_{0}^{1}$[2+$\sqrt{x}$-(-1-x2)dx═∫${\;}_{0}^{1}$(3+$\sqrt{x}$+x2)dx=($\frac{1}{3}$x3+3x+$\frac{2}{3}$x${\;}^{\frac{3}{2}}$)|${\;}_{0}^{1}$=$\frac{1}{3}$+3+$\frac{2}{3}$=4,
故答案為:4.
點(diǎn)評 本題主要考查區(qū)域的面積的計(jì)算,利用積分的幾何意義是解決本題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f(x)=sinx | B. | f(x)=2cosx+1 | C. | f(x)=2x-1 | D. | $f(x)=ln\frac{1-x}{1+x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\frac{{\sqrt{13}}}{2}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com