【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
【答案】解:(Ⅰ)由f(x)≤3,得|x﹣a|≤3,
∴a﹣3≤x≤a+3,
又f(x)≤3的解集為[﹣1,5].
∴
,解得:a=2;
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x﹣3)|=5.
又f(x)+f(x+5)≥m對一切實數(shù)x恒成立,
∴m≤5
【解析】(Ⅰ)由f(x)≤3求解絕對值的不等式,結(jié)合不等式f(x)≤3的解集為[﹣1,5]列式求得實數(shù)a的值;(Ⅱ)利用絕對值的不等式放縮得到f(x)+f(x+5)≥5,結(jié)合f(x)+f(x+5)≥m對一切實數(shù)x恒成立,即可求得實數(shù)m的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點的雙曲線
的右焦點為
,右頂點為
.
(
)求雙曲線
的方程;
(
)若直線
與雙曲線
交于不同的兩點
,
,且線段
的垂直平分線過點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:
,并整理得到如下頻率分布直方圖:
![]()
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C的方程為
,點
.
求過點M且與圓C相切的直線方程;
過點M任作一條直線與圓C交于A,B兩點,圓C與x軸正半軸的交點為P,求證:直線PA與PB的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+
﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點,求實數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)a=﹣
時,方程f(1﹣x)=
有實根,求實數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,且
,設(shè)命題
:函數(shù)
在
上單調(diào)遞減;命題
:函數(shù)
在
上為增函數(shù),
(1)若“
且
”為真,求實數(shù)
的取值范圍
(2)若“
且
”為假,“
或
”為真,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱
中,
,
,
是棱
上的動點.
證明:
;
若平面
分該棱柱為體積相等的兩個部分,試確定點
的位置,并求二面角
的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點
,動圓
經(jīng)過點
且和直線
相切,記動圓的圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)曲線
上一點
的橫坐標(biāo)為
,過
的直線交
于一點
,交
軸于點
,過點
作
的垂線交
于另一點
,若
是
的切線,求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com