(05年福建卷理)(14分)
已知數(shù)列{an}滿足a1=a, an+1=1+
我們知道當(dāng)a取不同的值時(shí),得到不同的數(shù)列,如當(dāng)a=1時(shí),得到無(wú)窮數(shù)列:![]()
(Ⅰ)求當(dāng)a為何值時(shí)a4=0;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=-1, bn+1=
,求證a取數(shù)列{bn}中的任一個(gè)數(shù),都可以得到一個(gè)有窮數(shù)列{an};
(Ⅲ)若
,求a的取值范圍.
解析:(Ⅰ)∵a1=a,∴1+
=a2,∴a2=
,
,
,
故當(dāng)
時(shí),![]()
(Ⅱ)∵b1=-1,![]()
當(dāng)a=b1時(shí),a1=1+
=0
當(dāng)a=b2時(shí),a2=
=b1,∴a2=0,
當(dāng)a=b3時(shí),a3=1+
=b2,∴a3=1+
,∴a4=0,
……
一般地,當(dāng)a=bn時(shí),an+1=0,可得一個(gè)含育n+1項(xiàng)的有窮數(shù)列a1,a2,a3,…,an+1.
可用數(shù)學(xué)歸納法加以證明:
① 當(dāng)n=1時(shí),a=b1,顯然a2=0,得到一個(gè)含2項(xiàng)的有窮數(shù)列a1,a2.
② 假設(shè)當(dāng)n=k時(shí),a=bk,得到一個(gè)含有k+1項(xiàng)的有窮數(shù)列a1,a2,a3,…,ak+1,其中ak+1=0,則n=k+1時(shí).a=bk+1,∴a2=1+
.
由假設(shè)可知,可得到一個(gè)含有k+1項(xiàng)的有窮數(shù)列a2,a3,…,ak+2,其中ak+2=0.
由①②知,對(duì)一切n∈N+,命題都成立.
(Ⅲ)要使
即
,∴1<an-1<2.
∴要使
,當(dāng)且僅當(dāng)它的前一項(xiàng)an-1,滿足1<an-1<2,∵(
,2)
(1,2),
∴只須當(dāng)a4
,都有![]()
由
得
,
解不等式組
得
,故a>0.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”――目測(cè)、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為
,求隨機(jī)變量
的期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年江蘇百校樣本分析)(10分)(矩陣與變換) 給定矩陣 A=
,
=
.
(1)求A的特征值
、
及對(duì)應(yīng)的特征向量
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年莆田四中一模理) (14分)
由函數(shù)
確定數(shù)列
,
,若函數(shù)
的反函數(shù)
能確定數(shù)列
,
,則稱數(shù)列
是數(shù)列
的“反數(shù)列”。
(1)若函數(shù)
確定數(shù)列
的反數(shù)列為
,求
的通項(xiàng)公式;
(2)對(duì)(1)中
,不等式
對(duì)任意的正整數(shù)
恒成立,求實(shí)數(shù)
的范圍;
(3)設(shè)
,若數(shù)列
的反數(shù)列為
,
與
的公共項(xiàng)組成的數(shù)列為
;求數(shù)列
前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年遼寧卷)(12分)
已知函數(shù)
.設(shè)數(shù)列
滿足
,
,數(shù)列
滿足
,
…
,
(Ⅰ)用數(shù)學(xué)歸納法證明
;(Ⅱ)證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年湖北卷文)(12分)
設(shè)數(shù)列
的前n項(xiàng)和為Sn=2n2,
為等比數(shù)列,且![]()
(Ⅰ)求數(shù)列
和
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前n項(xiàng)和Tn.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com