分析 設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),焦點F1(-c,0),F(xiàn)2(c,0),運用橢圓的定義和橢圓上一點到焦點的距離的范圍,結(jié)合離心率公式和范圍,即可得到所求范圍.
解答 解:設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
焦點F1(-c,0),F(xiàn)2(c,0),
由橢圓的定義可得PF1+PF2=2a,
又PF1=4PF2,可得
PF2=$\frac{2}{5}$a,
由a-c≤$\frac{2}{5}$a≤a+c,
可得c≥$\frac{3}{5}$a,
即有e=$\frac{c}{a}$≥$\frac{3}{5}$,
由于0<e<1,即有$\frac{3}{5}$≤e<1.
故答案為:[$\frac{3}{5}$,1).
點評 本題考查橢圓的定義、方程和性質(zhì),考查離心率的范圍,注意定義法和離心率公式的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,$\sqrt{2}$] | B. | [1,2] | C. | [$\frac{\sqrt{2}}{2}$,1) | D. | [$\frac{1}{4}$,$\frac{\sqrt{2}}{2}$] |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com