欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.已知扇形的周長(zhǎng)為20,當(dāng)扇形的圓心角為2弧度時(shí),它有最大的面積.

分析 根據(jù)扇形的弧長(zhǎng)與半徑的關(guān)系,建立等式,然后根據(jù)面積公式轉(zhuǎn)化成關(guān)于r的二次函數(shù),通過解二次函數(shù)最值即可得到結(jié)論..

解答 解:∵扇形的周長(zhǎng)為20,
∴l(xiāng)+2r=20,
即l=20-2r,
∴扇形的面積S=$\frac{1}{2}$lr=$\frac{1}{2}$(20-2r)•r=-r2+10r=-(r-5)2+25
∴當(dāng)半徑r=5時(shí),扇形的面積最大為25,
此時(shí),α=$\frac{l}{r}$=$\frac{20-2×5}{5}$=2(rad),
故答案為:2

點(diǎn)評(píng) 本題考查扇形的面積公式和弧長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知非零向量$\overrightarrow a,\vec b$,滿足$|{\overrightarrow a}|=1$且$({\overrightarrow a-\overrightarrow b})•({\overrightarrow a+\overrightarrow b})=\frac{1}{2}$.
(1)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求向量$\overrightarrow a,\vec b$的夾角;
(2)在(1)的條件下,求$|{\overrightarrow a-\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a5=3,S5=10,則a13的值是( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩個(gè)垂直的單位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow$=-$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,x$\overrightarrow{a}$+y$\overrightarrow$+z$\overrightarrow{c}$=-$\overrightarrow{{e}_{2}}$,則下列命題:
①$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$中任意兩個(gè)向量都可以作為平面內(nèi)所有向量的一組基底;
②$\overrightarrow$∥$\overrightarrow{c}$;
③$\overrightarrow{c}$在$\overrightarrow$上的投影為正值;
④若$\overrightarrow{p}$=(x,y),則|$\overrightarrow{p}$|2的最小值為$\frac{3}{4}$.
其中正確的命題是①④(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,那么|$\overrightarrow{a}$-4$\overrightarrow$|等于( 。
A.2B.2$\sqrt{3}$C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線ax+2by-2=0(a≥b>0),始終平分圓x2+y2-4x-2y-8=0的周長(zhǎng),則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.1B.3+2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.關(guān)于x的不等式ax2+bx+2>0的解為$(-\frac{1}{2},\frac{1}{3})$.
(1)求a,b的值;
(2)求關(guān)于x的不等式$\frac{ax+b}{x-2}$≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.計(jì)算${∫}_{1}^{2}$($\frac{1}{x}$+x)dx=ln2+$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-l,2),若$m\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,則m等于$\frac{6}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案