【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期為π,且它的圖象過點(diǎn)(
,
).
(1)求ω,φ的值;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間.
【答案】
(1)解:∵函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期為π,
∴
=π,∴ω=2.
∵它的圖象過點(diǎn)(
,
),∴cos(
+φ)=
,∴
+φ=﹣
,∴φ=﹣
.
(2)解:由以上可得,f(x)=cos(2x﹣
),
令2kπ﹣π≤2x﹣
≤2kπ,求得kπ﹣
≤x≤kπ+
,
∴函數(shù)y=f(x)的單調(diào)增區(qū)間為[kπ﹣
,kπ+
],k∈Z
【解析】(1)由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值.(2)根據(jù)函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,求出函數(shù)y=f(x)的單調(diào)增區(qū)間.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a∈R).
(1)若曲線g(x)=f(x)+x上點(diǎn)(1,g(1))處的切線過點(diǎn)(0,2),求函數(shù)g(x)的單調(diào)減區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間(0,
)內(nèi)無零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
在點(diǎn)
處的切線為
,求
的值;
(2)求
的單調(diào)區(qū)間;
(3)若
,求證:在
時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)=
,當(dāng)x>1時,則有( )
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
是自然對數(shù)的底數(shù))與
的圖象上存在關(guān)于
軸對稱的點(diǎn),則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(1)當(dāng)a=b=2時,求函數(shù)f(x)的最大值;
(2)證明:函數(shù)f(x)的最大值|2a﹣b|+a;
(3)證明:f(x)+|2a﹣b|+a≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx(其中常數(shù)a,b∈R),g(x)=f(x)﹣f′(x)是奇函數(shù),
(1)求f(x)的表達(dá)式;
(2)求g(x)在[1,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(不等式選講)
已知函數(shù)
.
(1)若
,解不等式
;
(2)若不等式
在R上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(a>b>0)的右焦點(diǎn)F(1,0),離心率為
,過F作兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點(diǎn)分別為M,N. ![]()
(1)求橢圓的方程;
(2)證明:直線MN必過定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(3)若弦AB,CD的斜率均存在,求△FMN面積的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com