【題目】已知函數(shù)
的圖象與
軸相切,
.
(Ⅰ)求證:
;
(Ⅱ)若
,求證: ![]()
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)對(duì)函數(shù)求導(dǎo),設(shè)
的圖象與
軸相交于點(diǎn)
,由題意可得在該點(diǎn)處導(dǎo)數(shù)值為0,函數(shù)值為0,構(gòu)造方程組可得
的值,將題意轉(zhuǎn)化為
,設(shè)
,利用導(dǎo)數(shù)判斷其單調(diào)性求出最大值即可;(Ⅱ)構(gòu)造函數(shù)
,對(duì)其求導(dǎo)結(jié)合(Ⅰ)可得
的單調(diào)性,從而有
,化簡(jiǎn)整理可得
,運(yùn)用換底公式及(Ⅰ)中的不等式
可得
,再次運(yùn)用
可得結(jié)論.
試題解析:(Ⅰ)
, 設(shè)
的圖象與
軸相交于點(diǎn)
,
則
即![]()
解得
.
所以
,
等價(jià)于
.
設(shè)
,則
,
當(dāng)
時(shí),
,
單調(diào)遞增;
當(dāng)
時(shí),
,
單調(diào)遞減,
所以
,
即
,(*),所以
.
(Ⅱ)設(shè)
,則
,
由(Ⅰ)可知,當(dāng)
時(shí),
,
從而有
,所以
單調(diào)遞增,
又
,所以
,
從而有
,即
,
所以
,即
,
,
又
,所以
,
又
,所以
.
綜上可知,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B、C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a、b、c,若cosBcosC﹣sinBsinC=
.
(1)求角A;
(2)若a=2
,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①函數(shù)y=cos(2x﹣
)圖象的一條對(duì)稱軸是x=
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點(diǎn)個(gè)數(shù)為3個(gè);
③將函數(shù)y=sin(2x+
)的圖象向右平移
個(gè)單位長(zhǎng)度可得到函數(shù)y=sin2x的圖象;
④存在實(shí)數(shù)x,使得等式sinx+cosx=
成立;
其中正確的命題為(寫(xiě)出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)發(fā)展,淮北市在一天的上下班時(shí)段也出現(xiàn)了堵車嚴(yán)重的現(xiàn)象。交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T(mén),其范圍為[0,10],分別有5個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢绺叻鍟r(shí)段(T≥3 ),從淮北市交通指揮中心隨機(jī)選取了一至四馬路之間50個(gè)交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
![]()
(I)據(jù)此直方圖估算交通指數(shù)T∈[4,8)時(shí)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個(gè)路段至少有2個(gè)嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(III)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人用時(shí)間的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐
中,底面
為平行四邊形,
,
,
,
點(diǎn)在底面
內(nèi)的射影
在線段
上,且
,
,
為
的中點(diǎn),
在線段
上,且
.
![]()
(Ⅰ)當(dāng)
時(shí),證明:平面
平面
;
(Ⅱ)當(dāng)平面
與平面
所成的二面角的正弦值為
時(shí),求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某港口
處獲悉,其正東方向距離20n mile的
處有一艘漁船遇險(xiǎn)等待營(yíng)救,此時(shí)救援船在港口的南偏西30°距港口10n mile的C處,救援船接到救援命令立即從C處沿直線前往B處營(yíng)救漁船.
![]()
(1)求接到救援命令時(shí)救援船距漁船的距離;
(2)試問(wèn)救援船在C處應(yīng)朝北偏東多少度的方向沿直線前往B處救援?(已知
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樣本a1 , a2 , a3 , …,a10的平均數(shù)為
,樣本b1 , b2 , b3 , …,b10的平均數(shù)為
,那么樣本a1 , b1 , a2 , b2 , …,a10 , b10的平均數(shù)為( )
A.
+ ![]()
![]()
B.
(
+
)![]()
C.2(
+
)
D.
(
+
)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(
x+φ),x∈R,A>0,0<φ<
.y=f(x)的部分圖象如圖所示,P、Q 分別為該圖象的最高點(diǎn)和最低點(diǎn),點(diǎn)P的坐標(biāo)為(1,A).點(diǎn)R的坐標(biāo)為(1,0),∠PRQ=
. ![]()
(1)求f(x)的最小正周期以及解析式.
(2)用五點(diǎn)法畫(huà)出f(x)在x∈[﹣
,
]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列四個(gè)正方體中,
為正方體的兩個(gè)頂點(diǎn),
為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接
與平面
不平行的是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com