欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知實數(shù)x,y滿足x+y-4=0,則x2+y2的最小值為8.

分析 由條件利用二次函數(shù)的性質(zhì),求得x2+y2的最小值.

解答 解:由實數(shù)x,y滿足x+y-4=0,則x2+y2 =x2+(4-x)2 =2x2-8x+16=2•(2-x)2+8,
故當(dāng)x=2時,函數(shù)x2+y2 取得最小值為8,
故答案為:8.

點(diǎn)評 本題主要考查二次函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)與雙曲線C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>0,b2>0)有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)橢圓的離心率為e1,雙曲線的離心率為e2,O為坐標(biāo)原點(diǎn),P是兩曲線的公共點(diǎn),且∠F1PF2=60°,則$\frac{{e}_{1}{e}_{2}}{\sqrt{3{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$,(a>0且a≠1)是奇函數(shù)
(1)求m的值;
(2)討論f(x)在(1,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三個互不相等的整數(shù)x、y、z之和在區(qū)間(40,44)內(nèi),若x、y、z依次構(gòu)成公差為d的等差數(shù)列,x+y,y+z,z+x依次構(gòu)成公比為q的等比數(shù)列,則d•q的值為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的定義域.
(1)y=tan(3x+$\frac{π}{4}$)   
(2)y=$\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若關(guān)于x的不等式|x-1|+2|x+2|≤a在[-4,4]上有解,則實數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x>1,且x+x-1=11,求${x}^{\frac{1}{2}}$-${x}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)向量$\overrightarrow{a}$=(-1,1),$\overrightarrow$=(4,1),$\overrightarrow{c}$=(cosθ,λsinθ)(λ∈R).
(1)設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為α,求tanα;
(2)若(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$的最大值$\sqrt{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在底面是正方形的長方體ABCD-A1B1C1D1中,MN是在平面ACCA${\;}_1^{\;}$內(nèi),且MN⊥AC,則MN和BB1的位置關(guān)系是平行.

查看答案和解析>>

同步練習(xí)冊答案