【題目】設(shè)樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )
A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某山區(qū)外圍有兩條相互垂直的直線型公路,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為
,山區(qū)邊界曲線為
,計劃修建的公路為
,如圖所示,
為
的兩個端點,測得點
到
的距離分別為5千米和40千米,點
到
的距離分別為20千米和2.5千米,以
所在的直線分別為
軸,建立平面直角坐標(biāo)系
,假設(shè)曲線
符合函數(shù)
(其中
為常數(shù))模型.
(1)求
的值;
(2)設(shè)公路
與曲線
相切于
點,
的橫坐標(biāo)為
.
①請寫出公路
長度的函數(shù)解析式
,并寫出其定義域;
②當(dāng)
為何值時,公路
的長度最短?求出最短長度.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,橢圓
的離心率為
,
是橢圓
的右焦點,
的斜率為
,
為坐標(biāo)原點.
(1)求橢圓
的方程;
(2)設(shè)過點
的動直線
與
交于
,
兩點,當(dāng)
面積最大時,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線
的普通方程;
(2)經(jīng)過點
(平面直角坐標(biāo)系
中點)作直線
交曲線
于
,
兩點,若
恰好為線段
的三等分點,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線![]()
(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)y=f(x)在區(qū)間
上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個關(guān)于數(shù)列命題:
(1)若
是等差數(shù)列,則三點
、
、
共線;
(2)若
是等比數(shù)列,則
、
、
(
)也是等比數(shù)列;
(3)等比數(shù)列
的前n項和為
,若對任意的
,點
均在函數(shù)
(
,
均為常數(shù))的圖象上,則r的值為
.
(4)對于數(shù)列
,定義數(shù)列
為數(shù)列
的“差數(shù)列”,若
,
的“差數(shù)列”的通項為
,則數(shù)列
的前
項和
![]()
其中正確命題的個數(shù)是 ( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國好聲音(![]()
![]()
![]()
)》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:
導(dǎo)師轉(zhuǎn)身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應(yīng)導(dǎo)師轉(zhuǎn)身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.
(1)請列出所有的基本事件;
(2)求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,函數(shù)
.
(1)求證:曲線
在點
處的切線過定點;
(2)若
是
在區(qū)間
上的極大值,但不是最大值,求實數(shù)
的取值范圍;
(3)求證:對任意給定的正數(shù)
,總存在
,使得
在
上為單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)若
在
上的最大值是
,求
的值;
(3)記
,當(dāng)
時,若對任意
,總有
成立,試求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com