分析 (1)由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組得答案;
(2)直接求出二次函數(shù)頂點的縱坐標(biāo)得到函數(shù)y=-x2-6x+7的值域.
解答 解:(1)由原函數(shù)得$\left\{{\begin{array}{l}{4-x≥0}\\{x-1≠0}\end{array}}\right.$,解之得x≤4且x≠1,
故所求函數(shù)的定義域為(-∞,1)∪(1,4];
(2)由原函數(shù)知函數(shù)圖象開口向下,
∴$y≤\frac{{4×({-1})×7-{{({-6})}^2}}}{{4×({-1})}}=16$,
故所求函數(shù)的值域為(-∞,16].
點評 本題考查函數(shù)的定義域及值域的求法,訓(xùn)練了二次函數(shù)最大值的求法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{7}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{5}$ | B. | -$\frac{\sqrt{2}}{5}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{30}$ | B. | $\frac{1}{2}$ | C. | $\frac{56}{900}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|0<x<1} | B. | {x|x<1} | C. | {x|0<x≤1} | D. | {x|x≤1} |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com