分析 由已知式子可得$\frac{4}{x}$+$\frac{1}{y}$=1,整體代入可得x+y=(x+y)($\frac{4}{x}$+$\frac{1}{y}$)=5+$\frac{4y}{x}$+$\frac{x}{y}$,由基本不等式可得.
解答 解:∵x,y均為正實數(shù),且x+4y-xy=0,
∴x+4y=xy,故$\frac{x+4y}{xy}$=1,即$\frac{4}{x}$+$\frac{1}{y}$=1,
∴x+y=(x+y)($\frac{4}{x}$+$\frac{1}{y}$)=5+$\frac{4y}{x}$+$\frac{x}{y}$
≥5+2$\sqrt{\frac{4y}{x}•\frac{x}{y}}$=9,
當且僅當$\frac{4y}{x}$=$\frac{x}{y}$即x=6且y=3時取等號,
故x+y的最小值為9,取得最小值時x,y的值分別為6和3.
點評 本題考查基本不等式求最值,整體變形代入并轉(zhuǎn)化為可以基本不等式形式是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2x-y-1=0 | B. | 2x+y+1=0 | C. | 2x-y+1=0 | D. | 2x+y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | p≥-$\frac{5}{2}$,q$≤-\frac{1}{2}$ | B. | p$≥-\frac{1}{2}$,q$≤\frac{1}{2}$ | C. | p≥-2,q≤-1 | D. | p≥-1,q≤0 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com