列0,1,0,-1,0,1,0,-1,…的一個通項公式是
![]()
cos![]()
cos![]()
cos![]()
科目:高中數(shù)學 來源: 題型:
| 投資A種商品金額(萬元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 獲純利潤(萬元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.4 |
| 投資B種商品金額(萬元) | 1 | 2 | 3 | 4 | 5 | 6 |
| 獲純利潤(萬元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
查看答案和解析>>
科目:高中數(shù)學 來源:湖南省長沙市一中2010屆高三第一次模擬考試數(shù)學理科試題 題型:022
給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,3,…,m),這樣的數(shù)列叫”0-1數(shù)列”.若存在一個正整數(shù)k(2≤k≤m
–1),使得數(shù)列{an}中某連續(xù)k項與該數(shù)列中另一個連續(xù)k項恰好按次序?qū)?yīng)相等,則稱數(shù)列{an}是“k階可重復(fù)數(shù)列”.例如數(shù)列{an}:0,1,1,0,1,1,0,因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)?yīng)相等,所以數(shù)列{an}是“4階可重復(fù)數(shù)列”.(
1)已知數(shù)列{bn}:0,0,0,1,1,0,0,1,1,0,則該數(shù)列________“5階可重復(fù)數(shù)列”(填“是”或“不是”);(
2)要使項數(shù)為m的所有”0-1數(shù)列”都為“2階可重復(fù)數(shù)列”,則m的最小值是________.查看答案和解析>>
科目:高中數(shù)學 來源:2008年高考預(yù)測卷數(shù)學科(一)新課標 題型:044
已知函數(shù)y=f(x)滿足:
;
(1)分別寫出x∈[0,1)時y=f(x)的解析式f1(x)和x∈[1,2)時y=f(x)的解析式f2(x);并猜想x∈[n,n+1),n≥-1,n∈Z時y=f(x)的解析式fn+1(x)(用x和n表示)(不必證明)
(2)當
(n≥-1,n∈Z)時,y=fn+1(x)x∈[n,n+1),n≥-1,n∈Z的圖象上有點列An+1(x,f(x))和點列Bn+1(n+1,f(n+1)),線段An+1Bn+2與線段Bn+1+An+2的交點Cn+1,求點Cn+1的坐標(an+1(x),bn+1(x));
(3)在前面(1)(2)的基礎(chǔ)上,請你提出一個點列Cn+1(an+1(x),bn+1(x))的問題,并進行研究,并寫下你研究的過程
查看答案和解析>>
科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(北京卷解析版) 題型:解答題
設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數(shù)表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為
,![]()
所以![]()
(2) 不妨設(shè)
.由題意得
.又因為
,所以
,
于是
,
,
![]()
所以
,當
,且
時,
取得最大值1。
(3)對于給定的正整數(shù)t,任給數(shù)表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表
,并且
,因此,不妨設(shè)
,
且![]()
。
由
得定義知,
,![]()
![]()
又因為![]()
所以![]()
![]()
![]()
所以,![]()
對數(shù)表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com