【題目】要得到函數(shù)y=sin(2x+
)的圖象,只需將y=cos(2x﹣
)圖象上的所有點( )
A.向左平行移動
個單位長度
B.向右平行移動
個單位長度
C.向左平行移動
個單位長度
D.向右平行移動
個單位長度
【答案】D
【解析】解:y=cos(2x﹣
)=sin(2x﹣
+
)=sin(2x+
), y=sin(2x+
)=sin[2(x﹣
)+
],
∴要得到函數(shù)y=sin(2x+
)的圖象,
只需將y=cos(2x﹣
)圖象上的所有點向右平行移動
個單位長度,
故選D.
【考點精析】關(guān)于本題考查的函數(shù)y=Asin(ωx+φ)的圖象變換,需要了解圖象上所有點向左(右)平移
個單位長度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=(lnx)ln(1﹣x).
(1)求函數(shù)y=f(x)的圖象在(
,f(
))處的切線方程;
(2)求函數(shù)y=f′(x)的零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=
sin2x+sinxcosx﹣
.
(1)求f(x)的單調(diào)增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若A為銳角且f(A)=
,b+c=4,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:
(θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ= ![]()
(Ⅰ)寫出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點M,N,MN的中點為P,l1與l2的交點為Q,l1恒過點A,求|AP||AQ|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的右焦點為F(2,0),點P(2,
)在橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點F的直線,交橢圓C于A、B兩點,點M在橢圓C上,坐標(biāo)原點O恰為△ABM的重心,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第31屆夏季奧林匹克運動會將于2016年8月5日﹣21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 | 第26屆亞特蘭大 | |
中國 | 38 | 51 | 32 | 28 | 16 |
俄羅斯 | 24 | 23 | 27 | 32 | 26 |
(Ⅰ)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);
(Ⅱ)甲、乙、丙三人競猜今年中國代表團和俄羅斯代表團中的哪一個獲得的金牌數(shù)多(假設(shè)兩國代表團獲得的金牌數(shù)不會相等),規(guī)定甲、乙、丙必須在兩個代表團中選一個,已知甲、乙猜中國代表團的概率都為
,丙猜中國代表團的概率為
,三人各自猜哪個代表團的結(jié)果互不影響.現(xiàn)讓甲、乙、丙各猜一次,設(shè)三人中猜中國代表團的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在2012﹣2016年的收入與支出情況如表所示:
收入x(億元) | 2.2 | 2.6 | 4.0 | 5.3 | 5.9 |
支出y(億元) | 0.2 | 1.5 | 2.0 | 2.5 | 3.8 |
根據(jù)表中數(shù)據(jù)可得回歸直線方程為
=0.8x+
,依次估計如果2017年該公司收入為7億元時的支出為( )
A.4.5億元
B.4.4億元
C.4.3億元
D.4.2億元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
+
=1(a>b>0)的上頂點為A,左右頂點為B,C,右焦點為F,|AF|=3,且△ABC的周長為14. ![]()
(1)求橢圓的離心率;
(2)過點M(4,0)的直線l與橢圓相交于不同兩點P,Q,點N在線段PQ上,設(shè)λ=
=
,試判斷點N是否在一條定直線上,并求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=4x,焦點為F,過點P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若
+
=18,則k= .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com