欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.f(x)是定義在[-1,1]上的奇函數(shù),若對任意的m,n∈[-1,1]時,有f(m)+f(n)<m+n.
(1)證明:f(x)在[-1,1]上是單調(diào)增函數(shù);
(2)解不等式f(x-1)+f(2x-3)<0.

分析 (1)根據(jù)單調(diào)性的定義,設(shè)任意的x1,x2∈[-1,1],且x1<x2,根據(jù)條件便可得到f(x1)-f(x2)<x1-x2<0,從而得出f(x1)<f(x2),這樣便證出f(x)在[-1,1]上單調(diào)遞增;
(2)根據(jù)f(x)為奇函數(shù)便可得到f(x-1)<f(2x-3),再根據(jù)f(x)的定義域及單調(diào)性便可得到$\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1≤2x-3≤1}\\{x-1<2x-3}\end{array}\right.$,解該不等式組即可得出原不等式的解集.

解答 解:(1)證明:根據(jù)條件,設(shè)x1,x2∈[-1,1],且x1<x2,則:
f(x1)-f(x2)=f(x1)+f(-x2)<x1-x2<0;
∴f(x1)<f(x2);
∴f(x)在[-1,1]上是單調(diào)增函數(shù);
(2)由f(x-1)+f(2x-3)<0得,f(x-1)<f(-2x+3);
∵f(x)在[-1,1]上單調(diào)遞增;
∴$\left\{\begin{array}{l}{-1≤x-1≤1}\\{-1≤-2x+3≤1}\\{x-1<-2x+3}\end{array}\right.$;
解得$1≤x<\frac{4}{3}$;
∴原不等式的解集為[1,$\frac{4}{3}$).

點評 考查奇函數(shù)的定義,增函數(shù)的定義,以及根據(jù)增函數(shù)的定義證明一個函數(shù)為增函數(shù)的方法和過程,作差比較f(x1)與f(x2)的方法,以及根據(jù)增函數(shù)的定義解不等式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)a為實數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)當a=2時,判斷函數(shù)的奇偶性并求函數(shù)的最小值;
(2)試討論f(x)的奇偶性;
(3)當x∈R時.求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.將sinθ+$\sqrt{3}$cosθ=Acos(θ+φ)(其中A<0,φ∈[0,2π)),則A=-2φ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=$\frac{2-x}{3x+6}$的遞減區(qū)間是(-∞,2),(2,+∞);函數(shù)y=$\sqrt{\frac{2-x}{3x+6}}$的遞減區(qū)間是(-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{x}^{2}+{a}^{2}}{x}$(a>0)
(1)求證:函數(shù)f(x)在區(qū)間(0,a]上是減函數(shù);
(2)如果函數(shù)f(x)在區(qū)間(0,2]上值域為[5,+∞),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列命題不正確的是( 。
A.根據(jù)古典概型概率計算公式P(A)=$\frac{{n}_{A}}{n}$求出的值是事件A發(fā)生的概率的精確值
B.根據(jù)幾何概型概率計算公式P(A)=$\frac{{μ}_{A}}{{μ}_{Ω}}$求出的值是事件A發(fā)生的概率的精確值
C.根據(jù)古典概型試驗,用計算機或計算器產(chǎn)生隨機整數(shù)統(tǒng)計試驗次數(shù)N和事件A發(fā)生的次數(shù)N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的近似值
D.根據(jù)幾何概型試驗,用計算機或計算器產(chǎn)生均勻隨機數(shù)統(tǒng)計試驗次數(shù)N和事件A發(fā)生次數(shù)N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的精確值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)y=f(x)在R上是增函數(shù).且f(0)=1,求不等式f(2x-1)-1>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)g(x)=f(x)•$\frac{x}{{x}^{2}-1}$(x≠±1)是偶函數(shù),且f(x)不恒等于0,則函數(shù)f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知在四邊形ABCD中,M,N分別是BC,AD的中點,又$\overrightarrow{AB}$=$\overrightarrow{DC}$,求證:$\overrightarrow{CN}$=$\overrightarrow{MA}$.

查看答案和解析>>

同步練習冊答案