欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)f(x)對一切自然數(shù)有定義,且①f(x)是整數(shù);②f(2)=2;③f(m·n)=f(m)·f(n)對一切自然數(shù)成立;④當(dāng)m>n時,有f(m)>f(n),試證:f(n)=n.

證明:(1)由于2=f(2)=f(1·2)=f(1)·f(2)=2f(1),∴f(1)=1,即n=1時,命題成立.

(2)設(shè)n≤k時,有f(k)=k.

當(dāng)n=k+1時,若k+1為偶數(shù),則k+1=2i(i∈N且i≤k),

∴f(k+1)=f(2i)=f(2)·f(i)=2i=k+1;若k+1為奇數(shù),則k+2為偶數(shù),即k+2=2(i+1)(i∈N且i+1≤k).

∴f(k+2)=f[2(i+1)]=f(2)·f(i+1)=2(i+1)=k+2.

由于k<k+1<k+2,

∴f(k)<f(k+1)<f(k+2)且f(n)為整數(shù),故f(k+1)=k+1,即當(dāng)n=k+1時結(jié)論成立.

由(1)(2),知對于n∈N都有f(n)=n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+
1
4
,g(x)=
1
2
ln(2ex)
,(其中e為自然底數(shù));
(Ⅰ)求y=f(x)-g(x)(x>0)的最小值;
(Ⅱ)探究是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達式,若不存在,說明理由;
(Ⅲ)數(shù)列{an}中,a1=1,an=g(an-1)(n≥2),求證:
n
k=1
(ak-ak+1)•ak+1
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(e,f(e))處的切線方程是2x-y-e=0(e為自然對數(shù)的底).
(1)求實數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對一切x∈(0,6)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省原名校高三上學(xué)期期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=,g(x)=ln(2ex)(其中e為自然對數(shù)的底數(shù))

(1)求y=f(x)-g(x)(x>0)的最小值;

(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達式,若不存在,說明理由:

3)數(shù)列{}中,a1=1,=g()(n≥2),求證:<1且

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市真光中學(xué)等六校協(xié)作體高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(e,f(e))處的切線方程是2x-y-e=0(e為自然對數(shù)的底).
(1)求實數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對一切x∈(0,6)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市真光中學(xué)等六校協(xié)作體高三第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax•lnx+b(a,b∈R),在點(e,f(e))處的切線方程是2x-y-e=0(e為自然對數(shù)的底).
(1)求實數(shù)a,b的值及f(x)的解析式;
(2)若t是正數(shù),設(shè)h(x)=f(x)+f(t-x),求h(x)的最小值;
(3)若關(guān)于x的不等式xlnx+(6-x)ln(6-x)≥ln(k2-72k)對一切x∈(0,6)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案