【題目】已知點(diǎn)
是拋物線
:
上的一點(diǎn),其焦點(diǎn)為點(diǎn)
,且拋物線
在點(diǎn)
處的切線
交圓
:
于不同的兩點(diǎn)
,
.
(1)若點(diǎn)
,求
的值;
(2)設(shè)點(diǎn)
為弦
的中點(diǎn),焦點(diǎn)
關(guān)于圓心
的對稱點(diǎn)為
,求
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)利用導(dǎo)數(shù)求出過點(diǎn)
的拋物線的切線,切線與圓相交,根據(jù)弦心距、半徑、弦長的關(guān)系求解即可;
(2)設(shè)點(diǎn)
,聯(lián)立切線與圓的方程消元可得一元二次方程,由韋達(dá)定理求出中點(diǎn)
的坐標(biāo),由兩點(diǎn)間距離公式表示出
,令
換元,利用函數(shù)的單調(diào)性即可求出取值范圍.
設(shè)點(diǎn)
,其中
.
因?yàn)?/span>
,所以切線
的斜率為
,于是切線
:
.
(1)因?yàn)?/span>
,于是切線
:
.
故圓心
到切線
的距離為
.
于是
.
(2)聯(lián)立
得
.
設(shè)
,
,
.則
,
.
解得![]()
又
,于是
.
于是
,
.
又
的焦點(diǎn)
,于是
.
故![]()
.
令
,則
.于是
.
因?yàn)?/span>
在
單調(diào)遞減,在
單調(diào)遞增.
又當(dāng)
時,
;當(dāng)
時,
;
當(dāng)
時,
.
所以
的取值范圍為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:
(1)根據(jù)以上提供的信息,完成
列聯(lián)表,并完善等高條形圖;
選物理 | 不選物理 | 總計(jì) | |
數(shù)學(xué)成績優(yōu)秀 | |||
數(shù)學(xué)成績不優(yōu)秀 | 260 | ||
總計(jì) | 600 | 1000 |
![]()
(2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為數(shù)學(xué)成績優(yōu)秀與選物理有關(guān)?
附:![]()
臨界值表:
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
為平行四邊形,
,且
,
,
是棱
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值;
(3)在線段
上(不含端點(diǎn))是否存在一點(diǎn)
,使得二面角
的余弦值為
?若存在,確定
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1)求
的單調(diào)區(qū)間和極值;
(2)證明:若
存在零點(diǎn),則
在區(qū)間
上僅有一個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
,
,
分別是
,
,
的中點(diǎn),點(diǎn)
在線段
上,
.
![]()
(1)求證:
平面
;
(2)若平面
平面
,
,
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線
的極坐標(biāo)方程和曲線
的參數(shù)方程;
(2)若
,直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了治理空氣污染,某市設(shè)
個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù)
,其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有
、
、
個監(jiān)測站,并以
個監(jiān)測站測得的
的平均值為依據(jù)播報該市的空氣質(zhì)量.
(1)若某日播報的
為
,已知輕度污染區(qū)
平均值為
,中度污染區(qū)
平均值為
,求重試污染區(qū)
平均值;
(2)如圖是
年
月份
天的
的頻率分布直方圖,
月份僅有
天
在
內(nèi).
![]()
①某校參照官方公布的
,如果周日
小于
就組織學(xué)生參加戶外活動,以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;
②環(huán)衛(wèi)部門從
月份
不小于
的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進(jìn)行研究,求抽取的這兩天中
值都在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)
為曲線
上的動點(diǎn),點(diǎn)
在線段
的延長線上且滿足
點(diǎn)
的軌跡為
.
(1)求曲線
的極坐標(biāo)方程;
(2)設(shè)點(diǎn)
的極坐標(biāo)為
,求
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com