已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在區(qū)間[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=-
是f(x)的極值點(diǎn),求f(x)在[1,a]上的最大值;
(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn),若存在,請(qǐng)求出實(shí)數(shù)b的取值范圍;若不存在,試說(shuō)明理由.
(1)a≤0(2)f(x)在[1,4]上的最大值是f(1)=-6(3)存在符合條件的實(shí)數(shù)b,b的范圍為b>-7且b≠- 3
(1)f′(x)=3x2-2ax-3
∵f(x)在[1,+∞)上是增函數(shù),
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立
則必有
≤1且f′(1)=-2a≥0,∴a≤0.
(2)依題意,f′(-
)=0,即
+
a-3=0
∴a=4,∴f(x)=x3-4x2-3x
令f′(x)=3x2-8x-3=0,
得x1=-
,x2=3.則
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
| x | 1 | (1,3) | 3 | (3,4) | 4 |
|
| - | 0 | + | ||
| f (x) | -6 |
| -18 |
| -12 |
∴f(x)在[1,4]上的最大值是f(1)=-6.
(3)函數(shù)g(x)=bx的圖象與函數(shù)f(x)的圖象恰有3個(gè)交點(diǎn),即方程x3-4x2-3x=bx恰有3個(gè)不等實(shí)根
∴x3-4x2-3x-bx=0,∴x=0是其中一個(gè)根,
∴方程x2-4x-3-b=0有兩個(gè)非零不等實(shí)根,
∴
,∴b>-7且b≠-3.
∴存在符合條件的實(shí)數(shù)b,b的范圍為b>-7且b≠- 3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 3 |
| f′(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題
| x |
| a |
| b |
| x |
| 4c2 |
| k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題
| 1 |
| 3 |
| f′(x) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com