(本小題滿分12分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
(1)證明:見解析;(2)點(diǎn)A到平面PBC的距離等于
.
【解析】本題考查線面平行,線面垂直,線線垂直,考查點(diǎn)到面的距離,解題的關(guān)鍵是掌握線面平行,線面垂直的判定方法,利用等體積轉(zhuǎn)化求點(diǎn)面距離
(1)利用線面垂直證明線線垂直,即證BC⊥平面PCD;
(2)利用等體積轉(zhuǎn)化求點(diǎn)A到平面PBC的距離.
(1)證明:∵ PD⊥平面ABCD,BC
平面ABCD,∴ PD⊥BC.
由∠BCD=90°,得CD⊥BC.又PD∩DC=D,PD,DC
平面PCD,
∴ BC⊥平面PCD.∵ PC
平面PCD,
故PC⊥BC.-------------------4分
(2)解:(方法一)分別取AB,PC的中點(diǎn)E,F(xiàn),連DE,DF, 則易證DE∥CB,DE∥平面PBC,點(diǎn)D,E到平面PBC的距離相等.
又點(diǎn)A到平面PBC的距離等于點(diǎn)E到平面PBC的距離的2倍,由(1)知,BC⊥平面PCD,
∴平面PBC⊥平面PCD.
∵ PD=DC,PF=FC,∴ DF⊥PC.
又 ∴ 平面PBC∩平面PCD=PC,∴ DF⊥平面PBC于F.
易知DF=
,故點(diǎn)A到平面PBC的距離等于
.--12分
(方法二):連接AC,設(shè)點(diǎn)A到平面PBC的距離為h.
∵ AB∥DC,∠BCD=90°,∴ ∠ABC=90°.
由AB=2,BC=1,得△ABC的面積S△ABC=1.
由PD⊥平面ABCD,及PD=1,得三棱錐P-ABC的體積
V=
S△ABC·PD=
.∵ PD⊥平面ABCD,DC
平面ABCD,∴ PD⊥DC.
又 ∴ PD=DC=1,∴ PC=
=
.
由PC⊥BC,BC=1,得△PBC的面積S△PBC=
.
∵ VA - PBC=VP - ABC,∴
S△PBC·h=V=
,
得h=
.
故點(diǎn)A到平面PBC的距離等于
.----------12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com