欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知Sn為數(shù)列{an}的前n項和,a1=1,2Sn=(n+1)an,若存在唯一的正整數(shù)n使得不等式an2-tan-2≤0成立,則實數(shù)t的取值范圍為[-1,1).

分析 由a1=1,2Sn=(n+1)an,n≥2時,2an=2(Sn-Sn-1),$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,=…=$\frac{{a}_{2}}{2}$=$\frac{{a}_{1}}{1}$=1,求的數(shù)列{an}的通項公式,分離變量根據(jù)n的取值即可求得t的取值范圍.

解答 解:∵a1=1,2Sn=(n+1)an,
∴n≥2時,2an=2(Sn-Sn-1)=(n+1)an-nan-1,化為:$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,
∴$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,=…=$\frac{{a}_{2}}{2}$=$\frac{{a}_{1}}{1}$=1,
∴an=n.
不等式an2-tan-2≤0化為:存在唯一的正整數(shù)n使得不等式:n2-tn-2≤0,
設(shè)f(n)=n2-tn-2,由于f(0)=-2t2
∴$\left\{\begin{array}{l}{f(1)=1-t-2≤0}\\{f(2)=4-2t-2>0}\end{array}\right.$,解得:-1≤t<1,
∴實數(shù)t的取值范圍為[-1,1),
故答案為:[-1,1).

點評 本題考查了數(shù)列的遞推關(guān)系、不等式的性質(zhì)、簡易邏輯的判定方法,運用參數(shù)分離法是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用輾轉(zhuǎn)相除法求8251與6105的最大公約數(shù)( 。
A.36B.37C.38D.39

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}中,a2+a3=14,a4-a1=6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)等比數(shù)列{bn}滿足b2=a1,b3=a3,若b6=am,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.學(xué)校游園活動有這樣一個游戲:A箱子里裝有3個白球,2個黑球,B箱子里裝有2個白球,2個黑球,參加該游戲的同學(xué)從兩個箱子中各摸出一個球,若顏色相同則獲獎,現(xiàn)甲同學(xué)參加了一次該游戲.
(Ⅰ)求甲獲獎的概率P;
(Ⅱ)記甲摸出的兩個球中白球的個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)a≥0,若P=$\sqrt{a}$+$\sqrt{a+8}$,Q=$\sqrt{a+2}$+$\sqrt{a+6}$,則P<Q(請用“>”,“<““=“符號填)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某公司進(jìn)行公開招聘,應(yīng)聘者從10個考題中通過抽簽隨機抽取3個題目作答,規(guī)定至少答對2道者才有機會進(jìn)入“面試”環(huán)節(jié),小王只會其中的6道.
(1)求小王能進(jìn)入“面試”環(huán)節(jié)的概率;
(2)求抽到小王作答的題目數(shù)量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算:$\root{3}{125}$=5,8${\;}^{lo{g}_{2}3}$=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.不等式(x-3)(x-1)>0的解集是(  )
A.{x|x>3}B.{x|1<x<3}C.{x|x>1}D.{x|x<1或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到如圖所示的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}({w}_{i}-\overline{w})^{2}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)(y1-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8289.81.6 1469 108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題,當(dāng)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計分別為:$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊答案