分析 由a1=1,2Sn=(n+1)an,n≥2時,2an=2(Sn-Sn-1),$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,=…=$\frac{{a}_{2}}{2}$=$\frac{{a}_{1}}{1}$=1,求的數(shù)列{an}的通項公式,分離變量根據(jù)n的取值即可求得t的取值范圍.
解答 解:∵a1=1,2Sn=(n+1)an,
∴n≥2時,2an=2(Sn-Sn-1)=(n+1)an-nan-1,化為:$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,
∴$\frac{{a}_{n}}{n}$=$\frac{{a}_{n-1}}{n-1}$,=…=$\frac{{a}_{2}}{2}$=$\frac{{a}_{1}}{1}$=1,
∴an=n.
不等式an2-tan-2≤0化為:存在唯一的正整數(shù)n使得不等式:n2-tn-2≤0,
設(shè)f(n)=n2-tn-2,由于f(0)=-2t2,
∴$\left\{\begin{array}{l}{f(1)=1-t-2≤0}\\{f(2)=4-2t-2>0}\end{array}\right.$,解得:-1≤t<1,
∴實數(shù)t的取值范圍為[-1,1),
故答案為:[-1,1).
點評 本題考查了數(shù)列的遞推關(guān)系、不等式的性質(zhì)、簡易邏輯的判定方法,運用參數(shù)分離法是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x>3} | B. | {x|1<x<3} | C. | {x|x>1} | D. | {x|x<1或x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}({w}_{i}-\overline{w})^{2}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(y1-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com