| A. | 4π | B. | 8π | C. | 12π | D. | $\frac{32π}{3}$ |
分析 根據(jù)題意判斷直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,我們可以把直三棱柱ABC-A1B1C1補(bǔ)成正四棱柱,則正四棱柱的體對(duì)角線是其外接球的直徑,求出外接球的直徑后,代入外接球的表面積公式,即可求出該三棱柱的外接球的表面積
解答
解:∵在直三棱錐ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=2,
∴AB⊥面BCC1B1,
即AB⊥BC
∴直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,
把直三棱柱ABC-A1B1C1補(bǔ)成正四棱柱,
則正四棱柱的體對(duì)角線是其外接球的直徑,
設(shè)D,D1分別為AC,A1C1的中點(diǎn),則DD1的中點(diǎn)O為球心,球的半徑$R=\sqrt{C{D^2}+O{D^2}}=\sqrt{3}$,故表面積為S=4πR2=12π.
故選:C.
點(diǎn)評(píng) 在求一個(gè)幾何體的外接球表面積(或體積)時(shí),關(guān)鍵是求出外接球的半徑,我們通常有如下辦法:①構(gòu)造三角形,解三角形求出R;②找出幾何體上到各頂點(diǎn)距離相等的點(diǎn),即球心,進(jìn)而求出R;③將幾何體補(bǔ)成一個(gè)長(zhǎng)方體,其對(duì)角線即為球的直徑,進(jìn)而求出R
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{14}{3}$ | B. | $\frac{19}{3}$ | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{5}{9}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (ρ,π+θ) | B. | (ρ,-θ) | C. | (ρ,π-θ) | D. | (ρ,2π-θ) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com