分析 (Ⅰ)根據(jù)定義在R的奇函數(shù)圖象必過(guò)原點(diǎn),得到a值;
(Ⅱ)設(shè)x1,x2為任意兩個(gè)實(shí)數(shù),且x1<x2,而f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$,利用作差證明f(x2)>f(x1)即可;
(Ⅲ)要證f(f(n))>f($\frac{n}{n+1}$),證即f(n)>$\frac{n}{n+1}$(n∈N,n≥3),即證1-$\frac{2}{{2}^{n}+1}$>1-$\frac{1}{n+1}$,即證2n-1>2n(n≥3).用數(shù)學(xué)歸納法即可證明
解答 解:(Ⅰ)∵函數(shù)f(x)=$\frac{{2}^{x}-a}{{2}^{x}+1}$是定義在R的奇函數(shù),
∴f(0)=$\frac{1-a}{1+1}$=0,
解得:a=1.
經(jīng)檢驗(yàn),當(dāng)a=1時(shí),
f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$滿(mǎn)足f(-x)=-f(x)為奇函數(shù);
證明:(Ⅱ)設(shè)x1,x2為任意兩個(gè)實(shí)數(shù),且x1<x2,
f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$,
f(x2)-f(x1)=$\frac{2}{{2}^{{x}_{1}}+1}$-$\frac{2}{{2}^{{x}_{2}}+1}$=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
由指數(shù)函數(shù)性質(zhì)知,(2x1+1)(2x2+1)>0,2x2-2x1>0,
∴f(x2)-f(x1)>0,
故f(x)在(-∞,+∞)上是增函數(shù);
(Ⅲ)由(Ⅱ)得:
要證要證f(f(n))>f($\frac{n}{n+1}$),
即證f(n)>$\frac{n}{n+1}$(n∈N,n≥3),
即證1-$\frac{2}{{2}^{n}+1}$>1-$\frac{1}{n+1}$,
即證2n-1>2n(n≥3).①
現(xiàn)用數(shù)學(xué)歸納法證明①式.
(1)當(dāng)n=3時(shí),左邊=23-1=7,右邊=2×3=6,
∴左邊>右邊,因而當(dāng)n=3時(shí)①式成立.
(2)假設(shè)當(dāng)n=k(k≥3)時(shí)①式成立,即有2k-1>2k,那么
2k+1-1=2•2k-1=2(2k-1)+1>2•2k+1=2(k+1)+(2k-1),
∵k≥3,∴2k-1>0.
∴2k+1-1>2(k+1).
這就是說(shuō),當(dāng)n=k+1時(shí)①式成立.
根據(jù)(1)(2)可知,①式對(duì)于任意不小于3的自然數(shù)n都成立.
由此有f(f(n))>f($\frac{n}{n+1}$).(n≥3,n∈N).
點(diǎn)評(píng) 本小題考查指數(shù)函數(shù),數(shù)學(xué)歸納法,不等式證明等知識(shí)以及綜合運(yùn)用有關(guān)知識(shí)解決問(wèn)題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
| B. | 若p∨q為真命題,則p、q均為真命題 | |
| C. | 命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0” | |
| D. | 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2x-y+1=0 | B. | x-2y+1=0 | C. | 2x-y-1=0 | D. | x-2y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-3,-2) | B. | (-1,0) | C. | (0,1) | D. | (4,5) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com