分析 (1)直接利用三角形的中位線,得到線線平行,進(jìn)一步利用線面平行的判定定理得到結(jié)論.
(2)利用線面垂直的判定和性質(zhì)定理和勾股定理得逆定理得到線線垂直,進(jìn)一步利用線面垂直的判定得到結(jié)論.
(3)利用等體積法,求三棱錐B-PAC的體積.
解答
(1)證明:設(shè)AC和BD交于點(diǎn)O,連PO,
由P,O分別是DD1,BD的中點(diǎn),故PO∥BD1,
所以直線BD1∥平面PAC-------------------------(5分)
(2)證明:PC2=2,PB12=3,B1C2=5,所以△PB1C是直角三角形.
所以PB1⊥PC,----------(8分)
同理PB1⊥PA,所以直線PB1⊥平面PAC.--------(10分)
(3)解:因?yàn)镻為中點(diǎn),所以PD=1,易知△ABC為直角三角形,且AB=BC=1,
所以${S_{△ABC}}=\frac{1}{2}AB×BC=\frac{1}{2}⇒{V_{B-PAC}}={V_{P-ABC}}=\frac{1}{3}{S_{△ABC}}×PD=\frac{1}{6}$-----(14分)
點(diǎn)評(píng) 本題考查線面平行的判定,線面垂直的判定和性質(zhì)的應(yīng)用,考查求三棱錐B-PAC的體積,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4n+1 | B. | 4n | C. | 4n-1 | D. | 4n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 直線 | B. | 圓 | C. | 橢圓 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-$\sqrt{2}$,$\sqrt{2}$] | B. | {-$\sqrt{2}$,$\sqrt{2}$} | C. | (-$\sqrt{2}$,$\sqrt{2}$) | D. | [0,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{4}{3}$ | B. | 1+$\sqrt{3}$ | C. | 1 | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com