【題目】證明下列不等式:
(1)設(shè)a,b,c∈R* , 且滿足條件a+b+c=1,證明:
≥9
(2)已知a≥0,證明:
<
.
【答案】
(1)證明:∵a>0,b>0,c>0,且a+b+c=1,
∴
=(a+b+c)(
)=3+(
+
)+(
+
)+(
)≥3+2+2+2=9(當(dāng)且僅當(dāng)a=b=c時(shí)取“=”)(證畢).
(2)證明:要證明
<
,
只要證明(
)2<(
)2,
只要證明a(a+3)<(a+2)(a+1),
只要證明0<2,顯然成立,
故原不等式成立
【解析】(1)依題意,可得
=(a+b+c)(
)=3+(
+
)+(
+
)+(
),利用基本不等式即可證得結(jié)論;(2)利用分析法證明即可.
【考點(diǎn)精析】關(guān)于本題考查的不等式的證明,需要了解不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等才能得出正確答案.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于平面向量
,
,
,有下列三個(gè)命題:
①若
=
,則
=
、
②若
=(1,k),
=(﹣2,6),
∥
,則k=﹣3.
③非零向量
和
滿足|
|=|
|=|
﹣
|,則
與
+
的夾角為60°.
其中真命題的序號(hào)為 . (寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣
,則使得f(x)>f(2x﹣1)成立的取值范圍是( )
A.(﹣∞,
)∪(1,+∞)
B.(
,1)
C.(
)
D.(﹣∞,﹣
,) ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|<
)的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的一半,再將圖象向右平移
個(gè)單位長(zhǎng)度得到函數(shù)y=sinx的圖象.
(1)直接寫出f(x)的表達(dá)式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C,所對(duì)的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac=
b2 .
(Ⅰ)當(dāng)p=
,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
:
,
:
(
),從
上的點(diǎn)
作
軸的垂線,交
于點(diǎn)
,再?gòu)狞c(diǎn)
作
軸的垂線,交
于點(diǎn)
.設(shè)
,
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)記
,數(shù)列
的前
項(xiàng)和為
,求證:
;
(Ⅲ)若已知
(
),記數(shù)列
的前
項(xiàng)和為
,數(shù)列
的前
項(xiàng)和為
,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(Ⅰ)證明:CD⊥AE;
(Ⅱ)證明:PD⊥平面ABE;
(Ⅲ)求二面角A﹣PD﹣C的正切值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)是否存在正整數(shù)
,使得
在
上恒成立?若存在,求出
的最大值并給出推導(dǎo)過(guò)程,若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com