分析 不妨設(shè)直線l方程:y=x-$\sqrt{3}$,并與橢圓方程聯(lián)立,利用韋達(dá)定理、兩點(diǎn)間距離公式計(jì)算即得結(jié)論.
解答 解:根據(jù)題意可知c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
不妨設(shè)直線l過右焦點(diǎn),則l:y=x-$\sqrt{3}$,
聯(lián)立$\left\{\begin{array}{l}{y=x-\sqrt{3}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,
消去y整理得:5x2-8$\sqrt{3}$x+8=0,
∴xA+xB=$\frac{8\sqrt{3}}{5}$,xAxB=$\frac{8}{5}$,
∴|AB|=$\sqrt{({x}_{A}-{x}_{B})^{2}+({y}_{A}-{y}_{B})^{2}}$
=$\sqrt{({x}_{A}-{x}_{B})^{2}+[({x}_{A}-\sqrt{3})-({x}_{B}-\sqrt{3})]^{2}}$
=$\sqrt{2[({x}_{A}+{x}_{B})^{2}-4{x}_{A}{x}_{B}]}$
=$\sqrt{2•[(\frac{8\sqrt{3}}{5})^{2}-4•\frac{8}{5}]}$
=$\frac{8}{5}$.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),注意解題方法的積累,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{a}$>$\frac{a+m}{b+m}$ | B. | $\frac{a}$=$\frac{a+m}{b+m}$ | ||
| C. | $\frac{a}$<$\frac{a+m}{b+m}$ | D. | $\frac{a}$與$\frac{a+m}{b+m}$間的大小不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com