欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.求直線2x+y-6=0與直線2x+y-1=0間的距離為( 。
A.7B.5C.$\sqrt{5}$D.$\sqrt{7}$

分析 運用兩平行線Ax+By+C1=0,Ax+By+C2=0,的距離公式d=$\frac{|{C}_{1}-{C}_{2}|}{\sqrt{{A}^{2}+{B}^{2}}}$,代入計算即可得到所求值.

解答 解:由于直線2x+y-6=0與直線2x+y-1=0平行,
由兩條平行線的距離公式可得:
所求距離為d=$\frac{|-6+1|}{\sqrt{4+1}}$=$\sqrt{5}$.
故選:C.

點評 本題考查兩平行線的距離公式的運用,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.設(shè)z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$.
①求|z|;
②若$\frac{{|{\overline z}|+mi}}{1-i}=\sqrt{2}$i,m∈R,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復數(shù)z滿足(1+2i3)z=1+2i,則z的虛部是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水x(單位:千克) 清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克) 的統(tǒng)計表:
x12345
 y5854392910
(1)在下面的坐標系中,描出散點圖,并判斷變量x與y的相關(guān)性;
(2)若用解析式$\widehaty=c{x^2}+d$作為蔬菜農(nóng)藥殘量$\widehaty$與用水量x的回歸方程,令ω=x2,計算平均值$\overlineω$與$\overline y$,完成以下表格(填在答題卡中),求出$\widehaty$與x的回歸方程.(c,d精確到0.1)
ω1491625
y5854392910
${ω_i}-\overlineω$-10-7-2514
${y_i}-\overline y$20161-28
(3)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請
估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}≈2.236$)
(附:線性回歸方程$\widehaty=bx+a$中系數(shù)計算公式分別為;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=x2+2xf'(1),則f'(1)-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow a$,$\overrightarrow$為兩個互相垂直的單位向量,向量$\overrightarrow c$滿足$(\overrightarrow a-\overrightarrow c)•(2\overrightarrow b-\overrightarrow c)$=0,則$|\overrightarrow c{|_{max}}$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在點(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)是否存在區(qū)間$(t,t+\frac{2}{3})$(t>0),使得f(x)在此區(qū)間上存在極值點和零點?若存在,求出實數(shù)t的取值范圍,若不存在,請說明理由;
(3)如果對任意x1、x2∈[e2,+∞],有|f(x1)-f(x2)|≥k|$\frac{1}{x_1}-\frac{1}{x_2}$|,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓的中心在坐標原點,焦點在x軸上,左右頂點分別為A1、A2,上下頂點分別為B1、B2,F(xiàn)2為右焦點,延長B2F2與A2B1交于點P,若∠B2PA2為鈍角,則該橢圓離心率的取值范圍是(  )
A.$({\frac{{\sqrt{5}-2}}{2},0})$B.$({0,\frac{{\sqrt{5}-2}}{2}})$C.$({0,\frac{{\sqrt{5}-1}}{2}})$D.$({\frac{{\sqrt{5}-1}}{2},1})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在二項式(x2-$\frac{1}{2x}$)9的展開式中,第4項的二項式系數(shù)是84.

查看答案和解析>>

同步練習冊答案