【題目】已知函數(shù)
,(a,b∈R)為奇函數(shù).
(1)求b值;
(2)當(dāng)a=﹣2時(shí),存在x0∈[1,4]使得不等式f(x0)≤t成立,求實(shí)數(shù)t的取值范圍;
(3)當(dāng)a≥1時(shí),求證:函數(shù)g(x)=f(2x)﹣c(c∈R)在區(qū)間(﹣∞,﹣1]上至多有一個(gè)零點(diǎn).
【答案】(1)b=0;(2)t≥2;(3)證明見(jiàn)解析
【解析】
(1)根據(jù)函數(shù)奇偶性的定義和性質(zhì)建立方程關(guān)系即可得到結(jié)論;
(2)根據(jù)函數(shù)單調(diào)性和最值的關(guān)系進(jìn)行求解即可;
(3)根據(jù)函數(shù)單調(diào)性的定義先判斷函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性和函數(shù)零點(diǎn)之間的關(guān)系進(jìn)行證明.
解:(1)
函數(shù)
為奇函數(shù),
,即
,
,即
;
(2)當(dāng)
時(shí),
,
函數(shù)
,
在
,
均單調(diào)遞增,
函數(shù)
在
,
單調(diào)遞增,
當(dāng)
,
時(shí),
,
存在
,
使得不等式
成立,
;
(3)證明:
,
設(shè)
,
,
,
,
,
,即
,
![]()
,又
,
,即
,
函數(shù)
在
,
單調(diào)遞減,
又
,結(jié)合函數(shù)圖象知函數(shù)
在
,
上至多有一個(gè)零點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過(guò)點(diǎn)
,傾斜角為
的直線l與曲線C相交于M,N兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,
平面ABCD,且![]()
![]()
![]()
.
![]()
(1)求證:
平面PBD;
(2)若PB與平面ABCD所成的角為
,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,
,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
![]()
(1)連結(jié)BE,證明:
平面
;
(2)在棱
上是否存在點(diǎn)G,使得
平面
,若存在,直接指出點(diǎn)G的位置
不必說(shuō)明理由
,并求出此時(shí)三棱錐
的體積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在[30,50)且未使用自由購(gòu)的概率;
(2)從被抽取的年齡在[50,70]使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若動(dòng)點(diǎn)
到定點(diǎn)
與定直線
的距離之和為
.
(1)求點(diǎn)
的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線
,問(wèn)曲線
上關(guān)于點(diǎn)
對(duì)稱的不同點(diǎn)有幾對(duì)?請(qǐng)說(shuō)明理由.
(3)(文)記(1)得到的軌跡為曲線
,若曲線
上恰有三對(duì)不同的點(diǎn)關(guān)于點(diǎn)
對(duì)稱,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人上午7時(shí)乘船出發(fā),以勻速
海里/小時(shí)
從
港前往相距50海里的
港,然后乘汽車以勻速
千米/小時(shí)(
)自
港前往相距
千米的
市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)
市.設(shè)乘船和汽車的所要的時(shí)間分別為
、
小時(shí),如果所需要的經(jīng)費(fèi)
(單位:元)
![]()
(1)試用含有
、
的代數(shù)式表示
;
(2)要使得所需經(jīng)費(fèi)
最少,求
和
的值,并求出此時(shí)的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線
由兩個(gè)橢圓
:
和橢圓
:
組成,當(dāng)
成等比數(shù)列時(shí),稱曲線
為“貓眼曲線”.
![]()
(1)若貓眼曲線
過(guò)點(diǎn)
,且
的公比為
,求貓眼曲線
的方程;
(2)對(duì)于題(1)中的求貓眼曲線
,任作斜率為
且不過(guò)原點(diǎn)的直線與該曲線相交,交橢圓
所得弦的中點(diǎn)為M,交橢圓
所得弦的中點(diǎn)為N,求證:
為與
無(wú)關(guān)的定值;
(3)若斜率為
的直線
為橢圓
的切線,且交橢圓
于點(diǎn)
,
為橢圓
上的任意一點(diǎn)(點(diǎn)
與點(diǎn)
不重合),求
面積的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com