分析 (1)直接利用動點P(x,y)到點A(-2,0)的距離是點P到點B(1,0)的距離的2倍,建立方程,即可求點P的軌跡方程;
(2)表示出面積,利用換元、配方法,即可得出結(jié)論.
解答 解:(1)∵動點P(x,y)到點A(-2,0)的距離是點P到點B(1,0)的距離的2倍,
∴(x+2)2+y2=4(x-1)2+4y2,
∴(x-2)2+y2=4;
(2)設(shè)直線方程為y=k(x+2),即kx-y+2k=0,
(2,0)到直線的距離為d=$\frac{|4k|}{\sqrt{{k}^{2}+1}}$,
直線代入圓的方程,整理得(1+k2)x2+(4k2-4)x+4k2=0,
∴|EF|=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4-4{k}^{2}}{1+{k}^{2}})^{2}-4•\frac{4{k}^{2}}{1+{k}^{2}}}$,
∴S△EFM=$\frac{1}{2}$|EF|d=8$\sqrt{\frac{(1-3{k}^{2}){k}^{2}}{(1+{k}^{2})^{2}}}$
設(shè)t=1+k2(t≥1),S△EFM=8$\sqrt{-4(\frac{1}{t}-\frac{7}{8})^{2}+\frac{1}{16}}$,
∴t=$\frac{8}{7}$時,S△EFM取得最大值2,此時k=$±\frac{\sqrt{7}}{7}$,y=$±\frac{\sqrt{7}}{7}$(x+2).
點評 本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查面積的計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 9$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 10$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2π}{3}$ | B. | $\frac{7π}{12}$ | C. | $\frac{7π}{6}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com