欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知底面為正方形的四棱錐P-ABCD內接于半徑為1的球.頂點P在底面ABCD上的射影是ABCD的中心.當四棱錐P-ABCD的體積最大時,四棱錐的高為$\frac{4}{3}$.

分析 利用射影定理,確定正方形的邊長與四棱錐的高的關系,表示出四棱錐的體積,利用基本不等式求出四棱錐P-ABCD的體積最大.

解答 解:設正方形的邊長為2a,四棱錐的高為h,則由射影定理可得2a2=h(2-h),
四棱錐P-ABCD的體積V=$\frac{1}{3}•{4a}^{2}h$=$\frac{1}{3}•h•h•(4-2h)$≤$\frac{1}{3}$•$(\frac{h+h+4-2h}{3})^{3}$=$\frac{64}{81}$,
當且僅當h=4-2h,即h=$\frac{4}{3}$時四棱錐P-ABCD的體積最大,
故答案為:$\frac{4}{3}$.

點評 本題考查四棱錐P-ABCD的體積最大值,考查基本不等式的運用,確定正方形的邊長與四棱錐的高的關系是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.做一個無蓋的圓柱形水桶,若要使其體積是27π,且用料最省,則圓柱的底面半徑為(  )
A.3B.4C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,正方形BCDE所在的平面與平面ABC互相垂直,其中∠ABC=120°,AB=BC=2,F(xiàn),G分別為CE,AB的中點.
(Ⅰ)求證:FG∥平面ADE;
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了100人,他們月收入(單位百元)的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表.
月收入[15,25)[25,35)[35,45)[45,45)[55,65)[65,75)
頻數(shù)102030201010
贊成人數(shù)816241264
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表并問是否有95%的把握認為“月收入以5500元為分界點”對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù)月收入高于55百元的人數(shù)合計
贊成a=c=
不贊成b=d=
合計
(Ⅱ)若對月收入在[15,25),[55,65)的不贊成“樓市限購令”的調查人中隨機選取2人進行追蹤調查,則選中的2人中恰有1人月收入在[15,25)的概率.
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(下面的臨界值表供參考)
(參考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)$f(x)=\frac{lnx+a}{x}(a∈R)$.
(1)求f(x)的極值;
(2)求證:$\frac{ln2}{6}+\frac{ln2•ln3}{24}+…+\frac{ln2•ln3…lnn}{(n+1)!}<\frac{n-1}{2n+2},n≥2$且n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.自主招生聯(lián)盟成形于2009年清華大學等五校聯(lián)考,主要包括“北約”聯(lián)盟,“華約”聯(lián)盟,“卓越”聯(lián)盟和“京派”聯(lián)盟,在調查某高中學校高三學生自主招生報考的情況,得到如下結果(  )
①報考“北約”聯(lián)盟的考生,都沒報考“華約”聯(lián)盟
②報考“華約”聯(lián)盟的考生,也報考了“京派”聯(lián)盟
③報考“卓越”聯(lián)盟的考生,都沒報考“京派”聯(lián)盟
④不報考“卓越”聯(lián)盟的考生,就報考“華約”聯(lián)盟
根據(jù)上述調查結果,下述結論錯誤的是(  )
A.沒有同時報考“華約”和“卓越”聯(lián)盟的考生
B.報考“華約”和“京派”聯(lián)盟的考生一樣多
C.報考“北約”聯(lián)盟的考生也報考了“卓越”聯(lián)盟
D.報考“京派”聯(lián)盟的考生也報考了“北約”聯(lián)盟

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為了傳承經典,促進課外閱讀,某市從高中年級和初中年級各隨機抽取40名同學進行有關對“四大名著”常識了解的競賽.如圖1和圖2分別是高中和初中年級參加競賽的學生成績按[40,50),[50,60),[60,70),[70,80]分組,得到頻率分布直方圖.
(1)若初中年級成績在[70,80)之間的學生中恰有4名女同學,現(xiàn)從成績在該組的初中年級的學生任選2名同學,求其中至少有1名男同學的概率;
(2)完成下列2×2列聯(lián)表,并回答是否有99%的把握認為“兩個學段的學生對‘四大名著’的了解有差異”?
成績小于60分人數(shù)成績不小于60分人數(shù)合計
高一年級
高二年級
合計
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.2015年下半年,“豆芽花”發(fā)卡突然在全國流行起來,各地隨處可見頭上遍插“小草”的人群,其形象如圖1所示:

對這種頭上長“草”的呆萌造型,大家褒貶不一.為了了解人們是否喜歡這種造型,隨機從人群中選取50人進行調查,每位被調查者都需要按照百分制對這種造型進行打分.按規(guī)定,如果被調查者的打分超過60分,那么被調查者屬于喜歡這種造型的人;否則,屬于不喜歡這種造型的人.將收集的分數(shù)分成[0,20],(20,40],(40,60],(60,80],(80,100]五組,并作出如下頻率分布直方圖(如圖2):
(Ⅰ)為了了解被調查者喜歡這種造型是否與喜歡動畫片有關,根據(jù)50位被調查者的情況制作的2×2列聯(lián)表如下表,請在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為被調查者喜歡頭上長“草”的造型與自身喜歡動畫片有關?
喜歡頭上長“草”的造型不喜歡頭上長“草”的造型合計
喜歡動畫片30
不喜歡動畫片6
合計
(Ⅱ)將上述調查所得到的頻率視為總體概率.現(xiàn)采用隨機抽樣方法抽取3人,記被抽取的3人中喜歡頭上長“草”的造型的人數(shù)為X.若每次抽取的結果是相互獨立的,求X的分布列、期望E(X)和方差D(X).
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.四棱錐P-ABCD中,平面PAD⊥平面ABCD,△BCD的邊長為$\sqrt{3}$的等邊三角形,AD=2,AB=1,點F在線段AP上.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)若BF∥平面PCD,△PAD是等邊三角形,求點F到平面PCD的距離.

查看答案和解析>>

同步練習冊答案