| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 利用正弦定理把題設(shè)等式中的角的正弦轉(zhuǎn)化成邊,代入到余弦定理中求得cosC中,求得cosC的值,進(jìn)而求得C,最后利用三角形面積公式求得答案.
解答 解:∵sin2A+sin2B-$\sqrt{2}$sinAsinB=sin2C,
∴a2+b2-$\sqrt{2}$ab=c2,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}}{2}$,
∴C=45°,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×4\sqrt{2}×\frac{\sqrt{2}}{2}$=2.
故選:B.
點(diǎn)評(píng) 本題主要考查了正弦定理和余弦定理的應(yīng)用.正弦定理和余弦定理是解三角形問(wèn)題常用的公式,應(yīng)熟練記憶.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,$\frac{1}{2}$] | B. | (-1,$\frac{1}{2}$] | C. | [$\frac{1}{2},+∞$) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,2} | B. | {x=-1,y=2} | C. | {(-1,2)} | D. | {{-1},{2}} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 7秒鐘 | B. | 8秒鐘 | C. | 9秒鐘 | D. | 10秒鐘 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com