【題目】在極坐標(biāo)系中,曲線
,曲線
,點(diǎn)
,以極點(diǎn)為原點(diǎn),極軸為
軸正半軸建立直角坐標(biāo)系.
(1)求曲線
和
的直角坐標(biāo)方程;
(2)過點(diǎn)
的直線
交
于點(diǎn)
,交
于點(diǎn)
,若
,求
的最大值.
【答案】(1)
,
;(2)![]()
【解析】試題分析:(1)第(1)問,利用極坐標(biāo)化直角坐標(biāo)的公式解答 .(2)第(2)問,
先把直線的參數(shù)方程代入曲線C1的直角坐標(biāo)方程,利用韋達(dá)定理求出
,再求出
,最后代入
,求出
的最大值.
試題解析:
(1)曲線C1的直角坐標(biāo)方程為:x2+y2-2y=0;
曲線C2的直角坐標(biāo)方程為:x=3.
(2)P的直角坐標(biāo)為(-1,0),設(shè)直線l的傾斜角為α,(0<α<
),
則直線l的參數(shù)方程為:
, (t為參數(shù),0<α<
)
代入C1的直角坐標(biāo)方程整理得,
t2-2(sinα+cosα)t+1=0,
t1+t2=2(sinα+cosα)
直線l的參數(shù)方程與x=3聯(lián)立解得,t3=
,
由t的幾何意義可知,
|PA|+|PB|=2(sinα+cosα)=λ|PQ|=
,整理得,
4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=
sin(2α+
)+1,
由0<α<
,
<2α+
<
,
所以,當(dāng)2α+
=
,即α=
時(shí),λ有最大值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM∥平面A1DE,則動(dòng)點(diǎn)M的軌跡長(zhǎng)度為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形
中,
,
,
,如圖1.把
沿
翻折,使得平面
平面
,如圖2.
(Ⅰ)求證:
;
(Ⅱ)若點(diǎn)
為線段
中點(diǎn),求點(diǎn)
到平面
的距離;
(Ⅲ)在線段
上是否存在點(diǎn)
,使得
與平面
所成角為
?若存在,求出
的值;若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究黏蟲孵化的平均溫度
(單位:
)與孵化天數(shù)
之間的關(guān)系,某課外興趣小組通過試驗(yàn)得到如下6組數(shù)據(jù):
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
平均溫度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天數(shù) | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他們分別用兩種模型①
,②
分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖:
![]()
經(jīng)計(jì)算得
,
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?(給出判斷即可,不必說明理由)
(2)殘差絕對(duì)值大于1的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立
關(guān)于
的線性回歸方程.(精確到0.1)
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線
與圓
相交于不同的兩點(diǎn)
,點(diǎn)
是線段
的中點(diǎn)。
(1)求直線
的方程;
(2)是否存在與直線
平行的直線
,使得
與與圓
相交于不同的兩點(diǎn)
,
不經(jīng)過點(diǎn)
,且
的面積
最大?若存在,求出
的方程及對(duì)應(yīng)的
的面積S;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當(dāng)
時(shí),
,
單調(diào)遞減,且
;
當(dāng)
時(shí),
,
單調(diào)遞增;且
,
所以
在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點(diǎn)睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程;
(2)在曲線
上取兩點(diǎn)
,
與原點(diǎn)
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)營(yíng)銷人員有如下規(guī)定:
①年銷售額
(萬元)在8萬元以下,沒有獎(jiǎng)金;
②年銷售額
(萬元),
時(shí),獎(jiǎng)金為
萬元,且
,
,且年銷售額越大,獎(jiǎng)金越多;
③年銷售額超過64萬元,按年銷售額的10%發(fā)獎(jiǎng)金.
(1)求獎(jiǎng)金y關(guān)于x的函數(shù)解析式;
(2)若某營(yíng)銷人員爭(zhēng)取獎(jiǎng)金
(萬元),則年銷售額
(萬元)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南新舊動(dòng)能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時(shí)代”邁向“黃河時(shí)代”的夢(mèng)想,肩負(fù)著山東省新舊動(dòng)能轉(zhuǎn)換先行先試的重任,是全國(guó)新舊動(dòng)能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過開放平臺(tái)匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶先行區(qū),對(duì)市場(chǎng)進(jìn)行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機(jī)器人
(百個(gè)),需另投人成本
(萬元),且
,由市場(chǎng)調(diào)研知,每個(gè)機(jī)器人售價(jià)6萬元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷售完.
(1)求年利潤(rùn)
(萬元)關(guān)于年產(chǎn)量
(百個(gè))的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)
(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤(rùn)超過2000(萬元)時(shí),才選擇落戶新舊動(dòng)能轉(zhuǎn)換先行區(qū).請(qǐng)問該企業(yè)能否落戶先行區(qū),并說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com