欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.某班甲、乙兩個活動小組各有5名編號為1,2,3,4,5的學(xué)生進行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計如下表:
學(xué)生1號2號3號4號5號
甲組65798
乙組48977
(Ⅰ)從統(tǒng)計數(shù)據(jù)看,甲乙兩個組哪個組成績更穩(wěn)定(用數(shù)據(jù)說明)?
(Ⅱ)若把上表數(shù)據(jù)對應(yīng)的頻率作為學(xué)生投籃命中率,規(guī)定兩個小組的1號和2號同學(xué)分別代表自己的小組參加比賽,每人投籃一次,將甲活動小組兩名同學(xué)投中的次數(shù)之和記作X,試求X的分布列和數(shù)學(xué)期望.

分析 (Ⅰ)求出兩個班數(shù)據(jù)的平均值都為7,求出甲班的方差,乙班的方差,推出結(jié)果即可.
(Ⅱ)X、Y可能取0,1,2,求出概率,得到分布列,然后分別求解期望.

解答 解:(Ⅰ)兩個班數(shù)據(jù)的平均值都為7,
甲班的方差${{s}_{1}}^{2}$=$\frac{(6-7)^{2}+(5-7)^{2}+(7-7)^{2}+(9-7)^{2}+(8-7)^{2}}{5}$=2,…(3分)
乙班的方差${{s}_{2}}^{2}$=$\frac{(4-7)^{2}+(8-7)^{2}+(9-7)^{2}+(7-7)^{2}+(7-7)^{2}}{5}$=$\frac{14}{5}$,
因為${{s}_{1}}^{2}$<${{s}_{1}}^{2}$,甲班的方差較小,所以甲班的成績比較穩(wěn)定.…(6分)
(Ⅱ)X可能取0,1,2.…(7分)
P(X=0)=$\frac{2}{5}×\frac{1}{2}$=$\frac{1}{5}$,P(X=1)=$\frac{3}{5}×\frac{1}{2}+\frac{2}{5}×\frac{1}{2}$=$\frac{1}{2}$,P(X=2)=$\frac{3}{5}×\frac{1}{2}$=$\frac{3}{10}$,…(10分)
所以X分布列為:

X012
P$\frac{1}{5}$$\frac{1}{2}$$\frac{3}{10}$
數(shù)學(xué)期望EX=0×$\frac{1}{5}$+1×$\frac{1}{2}$+2×$\frac{3}{10}$=$\frac{11}{10}$.…(12分)

點評 本小題主要考查統(tǒng)計與概率的相關(guān)知識,其中包括方差的求法、基本概率的應(yīng)用以及離散型隨機變量的數(shù)學(xué)期望的求法.本題主要考查學(xué)生的數(shù)據(jù)處理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)E(X)=10,E(Y)=3,則E(3X+5Y)=(  )
A.45B.40C.30D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)滿足f(x)=x3+f′($\frac{2}{3}$)x2-x+C(其中f′($\frac{2}{3}$)為f(x)在點x=$\frac{2}{3}$處的導(dǎo)數(shù),C為常數(shù)).
(1)求函數(shù)f(x);
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.正方體中,M、N分別是A1D1、DC的中點,
(1)求MN與面A1BC1所成角的正弦值;
(2)MN與BC1所成角;
(3)二面角A-B1D1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線l1:$\frac{x}{a}$-$\frac{y}$=1被橢圓C截得的弦長為2$\sqrt{2}$,且e=$\frac{\sqrt{6}}{3}$,過橢圓C的右焦點且斜率為$\sqrt{3}$的直線l2被橢圓C截得弦長AB,
(1)求橢圓的方程;
(2)弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)正整數(shù)a,b,c滿足:對任意的正整數(shù)n,an+bn=cn+1
(1)求證:a+b≥c
(2)求出所有滿足題設(shè)的a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1),(a≥0).
(1)如果a=1,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若x∈[0,+∞)時,恒有f(x)≤0,求實數(shù)a的取值范圍;
(3)證明:當m>n>0時,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}的前n項和為Sn=b×2n+a(a≠0,b≠0),若數(shù)列{an}是等比數(shù)列,則a,b滿足(  )
A.a-b=0B.a-b≠0C.a+b=0D.a+b≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知點C是圓心為O半徑為1的半圓弧上從點A數(shù)起的第一個三等分點,AB是直徑,CD=1,直線CD⊥平面ABC.
(1)證明:AC⊥BD;
(2)在DB上是否存在一點M,使得OM∥平面DAC,若存在,請確定點M的位置,并證明之;若不存在,請說明理由;
(3)求點C到平面ABD的距離.

查看答案和解析>>

同步練習(xí)冊答案