(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1.
思路分析:(1)利用偶函數(shù)的定義f(-x)=f(x).
(2)利用求函數(shù)單調(diào)性的步驟判斷函數(shù)在(0,1]上的單調(diào)性即可.
(3)求出函數(shù)的f(x)的最大值,讓其等于1,看a是否有解即可.
解:(1)∵x∈(0,1]時(shí),-x∈[-1,0),
∴f(-x)=(-x)3-a(-x)=ax-x3.
又f(x)為偶函數(shù),∴f(-x)=f(x),即f(x)=ax-x3.
(2)f′(x)=-3x2+a,∵x∈(0,1],∴x2∈(0,1].
∴-3x2≥-3.
∵a>3,∴-3x2+a>0,故f(x)在(0,1]上為增函數(shù).
(3)假設(shè)存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1.∴f′(x)=a-3x2.
令f′(x)=0,∴-3x2+a=0,即a>0時(shí),x=
.
又∵x∈(0,1),∴x=
且
<1.
∴f′(x)在(0,
)上大于0,在(
,1]上小于0.
∴f(x)max=f(
)=
=![]()
=1.
∴a=
時(shí),f(x)有最大值1.
方法歸納 關(guān)于存在性問(wèn)題,處理的方法可以先假設(shè)存在,再尋找所得的結(jié)論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年唐山一中一模文)(12分) 設(shè)函數(shù)f(x)是定義在R上的減函數(shù),滿足f(x+y)=f(x)•f(y)且f(0)=1,數(shù)列{an}滿足
a1=4,f(log3
f(-1-log3
=1 (n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),并在區(qū)間(-∞,0)內(nèi)單調(diào)遞增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范圍,并在該范圍內(nèi)求函數(shù)y=(
)
的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練7練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f
= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012屆度河南泌陽(yáng)二高高三第一次月考數(shù)學(xué)試卷 題型:填空題
設(shè)函數(shù)f(x) 是定義在R上的偶函數(shù),且對(duì)任意的x ÎR恒有f(x+1)=-f(x),已知當(dāng)x Î[0,1]時(shí),f(x)=3x.則
① 2是f(x)的周期; 、 函數(shù)f(x)的最大值為1,最小值為0;
③ 函數(shù)f(x)在(2,3)上是增函數(shù); ④ 直線x=2是函數(shù)f(x)圖象的一條對(duì)稱軸.
其中所有正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com