欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.國(guó)家物價(jià)部門在2015年11月11日那天,對(duì)某商品在網(wǎng)上五大購(gòu)物平臺(tái)的一天銷售量及其價(jià)格進(jìn)行調(diào)查,5大購(gòu)物平臺(tái)的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
價(jià)格x99.51010.511
銷售量y1110865
由散點(diǎn)圖可知,銷售量y與價(jià)格x之間有明顯的線性相關(guān)關(guān)系,已知其線性回歸直線方程是:y=-3.2x+a,則a=( 。
A.24B.35.6C.40D.40.5

分析 根據(jù)圖中數(shù)據(jù)求出$\overline{x}$、$\overline{y}$,再根據(jù)線性回歸直線方程過(guò)樣本中心點(diǎn),代人求出a的值.

解答 解:根據(jù)圖中數(shù)據(jù),得;
$\overline{x}$=$\frac{1}{5}$(9+9.5+10+10.5+11)=10,
$\overline{y}$=$\frac{1}{5}$(11+10+8+6+5)=8,
又線性回歸直線方程是:y=-3.2x+a,
∴a=$\overline{y}$+3.2×$\overline{x}$=8+3.2×10=40.
故選:C.

點(diǎn)評(píng) 本題考查了計(jì)算平均數(shù)與線性回歸直線方程過(guò)樣本中心點(diǎn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|2x-8<0},B={x|0<x<6},全集U=R,求:
(1)A∩B;
(2)(∁UA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列說(shuō)法正確的是( 。
A.$?x∈{R}\;,\;\root{3}{x}+1>0$
B.在線性回歸分析中,如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1
C.p∨q為真命題,則命題p和q均為真命題
D.命題“$?{x_0}∈{R}\;,\;x_0^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{1}{3}+2π$B.$\frac{{11+\sqrt{2}}}{2}π+1$C.$\frac{{11π+\sqrt{2}}}{2}$D.$\frac{11π}{2}+\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若cosθ<0,且$cosθ-sinθ=\sqrt{1-sin2θ}$,那么θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將函數(shù)$f(x)=1+cos2x-2{sin^2}(x-\frac{π}{6})$的圖象右移$\frac{π}{6}$個(gè)單位后,所得函數(shù)的下列結(jié)論中正確的是(  )
A.是最小正周期為2π的偶函數(shù)B.是最小正周期為2π的奇函數(shù)
C.是最小正周期為π的偶函數(shù)D.是最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在正三棱柱△ABC-△A1B1C1中,AB=1,點(diǎn)D在棱BB1上,若BD=1,則AD與平面AA1C1C所成角的正切值為$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示橢圓”是“-3<m<5”的( 。l件.
A.必要不充分B.充要C.充分不必要D.不充分不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在等腰三角形ABC中,若AB=AC,且sinA=$\frac{4}{5}$,則cosB=$\frac{\sqrt{5}}{5}$或$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案