分析 由二次函數(shù)y=f(x)的圖象過原點(diǎn),設(shè)出二次函數(shù)解析式為f(x)=ax2+bx(a≠0),把f(-1)和f(1)用含有a,b的代數(shù)式表示,聯(lián)立關(guān)于a,b的方程組解出a,b,然后把f(-2)也用含有a,b的代數(shù)式表示,最后轉(zhuǎn)化為用f(-1)和f(1)表示,由f(-1)和f(1)的范圍求得f(-2)的范圍.
解答 解:∵二次函數(shù)y=f(x)的圖象過原點(diǎn),
∴設(shè)f(x)=ax2+bx(a≠0),
又$\left\{\begin{array}{l}f(1)=a+b\\ f(-1)=a-b\end{array}\right.$,
得$\left\{\begin{array}{l}a=\frac{1}{2}[f(-1)+f(1)]\\ b=\frac{1}{2}[f(1)-f(-1)]\end{array}\right.$,
∴f(-2)=4a-2b=4×$\frac{1}{2}$[f(-1)+f(1)]-2×$\frac{1}{2}$[f(1)-f(-1)]=3f(-1)+f(1),
又∵f(-1)∈[-1,2],f(1)∈[2,4],即1≤f(-1)≤2,2≤f(1)≤4,
∴-1≤3f(-1)+f(1)≤10,
即-1≤f(-2)≤10.
∴f(-2)的取值范圍是[-1,10].
點(diǎn)評(píng) 本題考查了函數(shù)值的求法,訓(xùn)練了利用不等式求函數(shù)的值的范圍,解答此題的關(guān)鍵是把f(-2)轉(zhuǎn)化為含有f(-1)和f(1)的表達(dá)式,此題是易錯(cuò)題,學(xué)生往往會(huì)直接由f(-1)和f(1)的范圍聯(lián)立求出a和b的范圍,然后把f(-2)用a和b的代數(shù)式表示,由a和b的范圍求解f(-2)的范圍,忽略了其中a和b是相關(guān)聯(lián)的.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 12 | B. | $\frac{32}{5}$ | C. | 3 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (x-1)2+y2=1 | B. | x2+(y-1)2=1 | C. | (x+1)2+y2=1 | D. | x2+(y+1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-1,1] | B. | (0,$\frac{\sqrt{3}}{2}$] | C. | (0,$\frac{\sqrt{3}}{2}$) | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 28 | B. | 29 | C. | 30 | D. | 31 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com